首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Impulse noise: critical review   总被引:4,自引:0,他引:4  
A review of the last 10 years of research on impulse noise reveals certain insights and perspectives on the biological and audiological effects of exposures to impulse noise. First, impulse noise may damage the cochlea by direct mechanical processes. Second, after exposure to impulse noise, hearing may recover in an erratic, nonmonotonic pattern. Third, even though the existing damage-risk criteria evaluate impulse noise in terms of level, duration, and number, often parameters such as temporal pattern, waveform, and rise time are also important in the production of a hearing loss. Fourth, the effects of impulse noise are often inconsistent with the principle of the equal energy hypothesis. Fifth, impulse noise can interact with background continuous noise to produce greater hearing loss than would have been predicted by the simple sum of the individual noises.  相似文献   

3.
Variability in background risk and distribution of various risk factors for hearing loss may explain some of the diversity in excess risk of noise-induced hearing loss (NIHL). This paper examines the impact of various risk factors on excess risk estimates of NIHL using data from the 1968-1972 NIOSH Occupational Noise and Hearing Survey (ONHS). Previous analyses of a subset of these data focused on 1172 highly "screened" workers. In the current analysis, an additional 894 white males (609 noise-exposed and 285 controls), who were excluded for various reasons (i.e., nonoccupational noise exposure, otologic or medical conditions affecting hearing, prior occupational noise exposure) have been added 2066) to assess excess risk of noise-induced material impairment in an unscreened population. Data are analyzed by age, duration of exposure, and sound level (8-h TWA) for four different definitions of noise-induced hearing impairment, defined as the binaural pure-tone average (PTA) hearing threshold level greater than 25 dB for the following frequencies: (a) 1-4 kHz (PTA1234), (b) 1-3 kHz (PTA123), (c) 0.5, 1, and 2 kHz (PTA512), and (d) 3, 4, and 6 kHz (PTA346). Results indicate that populations with higher background risks of hearing loss may show lower excess risks attributable to noise relative to highly screened populations. Estimates of lifetime excess risk of hearing impairment were found to be significantly different between screened and unscreened population for noise levels greater than 90 dBA. Predicted age-related risk of material hearing impairment in the ONHS unscreened population was similar to that predicted from Annex B and C of ANSI S3.44 for ages less than 60 years. Results underscore the importance of understanding differential risk patterns for hearing loss and the use of appropriate reference (control) populations when evaluating risk of noise-induced hearing impairment among contemporary industrial populations.  相似文献   

4.
It is well known that excessive exposure to noise results in temporary and/or permanent changes in hearing sensitivity in both human and animal subjects. The purpose of this review is to describe the major findings from laboratory studies of experimentally induced hearing losses, both temporary and permanent, resulting from exposure to noise in animal subjects which have been published since the report of Kryter et al. (1966). The data reviewed support the following general statements: (1) The chinchilla is the most widely used and most appropriate animal model for studies of noise-induced hearing loss; (2) with continuous exposures to moderate-level noise, thresholds reach asymptotic levels (ATS) within 18-24 h; (3) permanent threshold shifts, however, depend upon the level, frequency, and the duration of exposure; (4) below a "critical level" of about 115 dB, permanent threshold shift (PTS) and cell loss are generally related to the total energy in continuous exposures; (5) periodic rest periods inserted in an exposure schedule are protective and result in less hearing loss and cochlear damage than equal energy continuous exposures; and (6) under some schedules of periodic exposure, threshold shifts increase over the first few days of exposure, then recover as much as 30 dB as the exposure continues.  相似文献   

5.
Agricultural mechanization in Japan has progressed dramatically since 1955 with the introduction of tractors, harvesters, and processing machines. These technological developments have resulted in an increase in exposure to sources of noise that are not only annoying, but damaging to hearing. The present study was undertaken to determine, whether Japanese farmers are at risk for noise-induced hearing loss in comparison with office workers, and by evaluating the present conditions regarding occupational noise levels among agricultural workers.The results suggest that farmers, especially male farmers, have a high prevalence of hearing loss in the higher frequency ranges. Daily noise exposure levels in LAeq ranged from 81.5 to 99.1 dBA for tea harvesting and processing, and from 83.2 to 97.6 for sugar cane harvesting. Taking into account their rather long working hours and excessive noise from farm machinery, it is concluded that farmers are at risk for noise-induced hearing loss. These findings clearly indicate a strong need for implementation of hearing conservation programs among agricultural workers exposed to machinery noise.  相似文献   

6.
This paper presents an analysis of hearing threshold levels among 2066 white male workers employed in various U.S. industries studied in the 1968-72 NIOSH Occupational Noise and Hearing Survey (ONHS). The distribution of hearing threshold levels (HTL) is examined in relation to various risk factors (age, prior occupational noise, medical conditions) for hearing loss among a population of noise exposed and control (low noise-exposed) industrial workers. Previous analyses of a subset of these data from the ONHS focused on 1172 highly "screened" workers. An additional 894 male workers (609 noise-exposed and 285 controls), who were excluded for various reasons (i.e., nonoccupational noise exposure, otologic or medical conditions affecting hearing, prior occupational noise exposure) have been added to examine hearing loss in an unscreened population. Data are analyzed by age, duration of exposure, and sound level (8-h TWA) by individual test frequency. Results indicate that hearing threshold levels are higher among unscreened noise-exposed and control workers relative to screened workers. Analysis of risk factors such as nonoccupational noise exposure, medical conditions, and type of industry among unscreened controls indicated that these factors were not significantly associated with increased mean HTLs or risk of material impairment over and above what is expected due to age. Age-specific mean hearing threshold levels (and percentiles of the distribution) among the unscreened ONHS control population may be used as a comparison population of low-noise exposed white male industrial workers for evaluating the effectiveness of hearing conservation programs for workers less than 55 years of age. To make valid inferences regarding occupational noise-induced hearing loss, it is important to use hearing data from reference (control) populations that are similar with respect to the degree of subject screening, type of work force (blue vs white collar), and the distribution of other risk factors for hearing loss.  相似文献   

7.
A number of studies have demonstrated that magnesium, administered prophylactically, can reduce the amount of hearing loss resulting from noise exposure. This study explored the possible role of naturally occurring body magnesium concentration in susceptibility of soldiers to noise-induced hearing loss. Participants were 68 adult males who had received extensive noise exposure over several years as a result of training with weapon systems. Each participant provided a pure-tone audiogram, blood sample, and noise-exposure history. A variety of pure-tone indices was correlated with serum magnesium levels as determined by atomic absorption spectroscopy. No significant correlations were observed between any audiometric index and body magnesium. The results of this study, therefore, do not support the hypothesis that there is a strong association between naturally occurring body magnesium and susceptibility to noise-induced hearing loss.  相似文献   

8.
A mathematical model for noise-induced hearing loss is based on the assumption that hair cells are damaged, temporarily or permanently, by metabolic exhaustion, and that the number of damaged hair cells and the hearing loss are monotonically increasing functions of an energy deficiency. The purpose of the model is to focus on the influence of sound intensity, exposure duration, and temporal pattern of the sound exposure on the noise-induced hearing loss from long-duration exposures. The model is restricted to the range of sound levels where metabolic exhaustion probably is the main reason for the hair cell damage. Only exposures with similar frequency spectra and producing moderate hearing losses are considered; frequency dependence is not discussed.  相似文献   

9.
An exposure that is reproducible across clinical/laboratory environments, and appealing to subjects, is described here. Digital music files are level-equated within and across songs such that playlists deliver an exposure that is consistent across time. Modified music is more pleasant to listen to than pure tones or shaped noise, and closely follows music exposures subjects may normally experience. Multiple therapeutics reduce noise-induced hearing loss in animals but human trial design is complicated by limited access to noise-exposed subject populations. The development of standard music exposure parameters for temporary threshold shift studies would allow comparison of protection across agents with real-world relevant stimuli in human subjects.  相似文献   

10.
The effects on hearing and the sensory cell population of four continuous, non-Gaussian noise exposures each having an A-weighted L(eq)=100 dB SPL were compared to the effects of an energy-equivalent Gaussian noise. The non-Gaussian noise conditions were characterized by the statistical metric, kurtosis (beta), computed on the unfiltered, beta(t), and the filtered, beta(f), time-domain signals. The chinchilla (n=58) was used as the animal model. Hearing thresholds were estimated using auditory-evoked potentials (AEP) recorded from the inferior colliculus and sensory cell populations were obtained from surface preparation histology. Despite equivalent exposure energies, the four non-Gaussian conditions produced considerably greater hearing and sensory cell loss than did the Gaussian condition. The magnitude of this excess trauma produced by the non-Gaussian noise was dependent on the frequency content, but not on the average energy content of the impacts which gave the noise its non-Gaussian character. These results indicate that beta(t) is an appropriate index of the increased hazard of exposure to non-Gaussian noises and that beta(f) may be useful in the prediction of the place-specific additional outer hair cell loss produced by non-Gaussian exposures. The results also suggest that energy-based metrics, while necessary for the prediction of noise-induced hearing loss, are not sufficient.  相似文献   

11.
Eight groups of chinchillas (N=74) were exposed to various equivalent energy [100 or 106 dB(A) sound pressure level (SPL)] noise exposure paradigms. Six groups received an interrupted, intermittent, time varying (IITV) Gaussian noise exposure that lasted 8 h/d, 5 d/week for 3 weeks. The exposures modeled an idealized workweek. At each level, three different temporal patterns of Gaussian IITV noise were used. The 100 dB(A) IITV exposure had a dB range of 90-108 dB SPL while the range of the 106 dB(A) IITV exposure was 80-115 dB SPL. Two reference groups were exposed to a uniform 100 or 106 dB(A) SPL noise, 24 h/d for 5 days. Each reference group and the three corresponding IITV groups comprised a set of equivalent energy exposures. Evoked potentials were used to estimate hearing thresholds and surface preparation histology quantified sensory cell populations. All six groups exposed to the IITV noise showed threshold toughening effects of up to 40 dB. All IITV exposures produced hearing and sensory cell loss that was similar to their respective equivalent energy reference group. These results indicate that for Gaussian noise the equal energy hypothesis for noise-induced hearing loss is an acceptable unifying principle.  相似文献   

12.
Sound conditioning (pre-exposure to a moderate-level acoustic stimulus) can induce resistance to hearing loss from a subsequent traumatic exposure. Most sound conditioning experiments have utilized long-duration tones and noise at levels below 110 dB SPL as traumatic stimuli. It is important to know if sound conditioning can also provide protection from brief, high-level stimuli such as impulses produced by gunfire, and whether there are differences between females and males in the response of the ear to noise. In the present study, chinchillas were exposed to 95 dB SPL octave band noise centered at 0.5 kHz for 6 h/day for 5 days. After 5 days of recovery, they were exposed to simulated M16 rifle fire at a level of 150 dB peak SPL. Animals that were sound conditioned showed less hearing loss and smaller hair cell lesions than controls. Females showed significantly less hearing loss than males at low frequencies, but more hearing loss at 16 kHz. Cochleograms showed slightly less hair cell loss in females than in males. The results show that significant protection from impulse noise can be achieved with a 5-day conditioning regimen, and that there are consistent differences between female and male chinchillas in the response of the cochlea to impulse noise.  相似文献   

13.
Sound exposures and hearing thresholds of symphony orchestra musicians   总被引:1,自引:0,他引:1  
To assess the risk of noise-induced hearing loss among musicians in the Chicago Symphony Orchestra, personal dosimeters set to the 3-dB exchange rate were used to obtain 68 noise exposure measurements during rehearsals and concerts. The musicians' Leq values ranged from 79-99 dB A-weighted sound pressure level [dB(A)], with a mean of 89.9 dB(A). Based on 15 h of on-the-job exposure per week, the corresponding 8-h daily Leq (excluding off-the-job practice and playing) ranged from 75-95 dB(A) with a mean of 85.5 dB(A). Mean hearing threshold levels (HTLs) for 59 musicians were better than those for an unscreened nonindustral noise-exposed population (NINEP), and only slightly worse than the 0.50 fractile data for the ISO 7029 (1984) screened presbycusis population. However, 52.5% of individual musicians showed notched audiograms consistent with noise-induced hearing damage. Violinists and violists showed significantly poorer thresholds at 3-6 kHz in the left ear than in the right ear, consistent with the left ear's greater exposure from their instruments. After HTLs were corrected for age and sex, HTLs were found to be significantly better for both ears of musicians playing bass, cello, harp, or piano and for the right ears of violinists and violists than for their left ears or for both ears of other musicians. For 32 musicians for whom both HTLs and Leq were obtained, HTLs at 3-6 kHz were found to be correlated with the Leq measured.  相似文献   

14.
Bies and Hansen [J. Acoust. Soc. Am. 88, 2743-2754 (1990)] have proposed an alternative formulation of the relationship between noise exposure and noise-induced hearing impairment to that presented in International Standard ISO 1999, in which they assume that presbycusis and noise-induced permanent threshold shift (NIPTS) are additive on an antilogarithm basis. Data concerning deterioration in hearing threshold levels at 4000 Hz due to aging in war veterans with NIPTS do not support the Bies and Hansen assumption but provide support for the formula for combining presbycusis and NIPTS incorporated in International Standard ISO 1999.  相似文献   

15.
The aim of this study was to examine susceptibility to noise-induced hearing loss in animals with and without age-related hearing loss (AHL), using cubic distortion product otoacoustic emissions (CDPs) to assess the functional status of the outer hair cell (OHC) system. Subjects were young (< or = 3-yr-old) and aged (10- to 15-yr-old) chinchillas. CDP thresholds and input/output (I/O) functions were measured before and after exposure to 95 dB or 106 dB SPL low-frequency noise. The results indicate that (a) aging in the chinchilla is associated with significant elevations of CDP thresholds and depression of CDP I/O functions, (b) noise exposures cause equivalent CDP threshold elevations and amplitude reductions in young animals with normal hearing and older animals with AHL, and (c) CDP threshold and amplitude measures provide information that complements evoked potentials measured from the auditory midbrain.  相似文献   

16.
Pure-tone hearing thresholds and anamnestic data pertaining to nosocusis and exposure to gun noise were analyzed for 9778 male railroad train-crew workers. A major portion of losses in hearing sensitivity due to railroad noise are obscured in comparisons of hearing levels of trainmen with the hearing levels of the unscreened samples of United States males given in Annex B, ISO 1999 [ISO 1999 (1990), "Acoustics--Determination of occupational noise exposure and estimation of noise-induced hearing impairment" (International Organization for Standardization, Geneva)]. Comparisons of the hearing levels, adjusted for nosocusis, of trainmen who had used no guns, with the hearing levels of otologically and noise screened males (Annex A, ISO 1999) reveal significant losses due to railroad noise. Additional losses were found at high frequencies in trainmen who had used guns. It appears that the effective Leq8h exposure level of trainmen to railroad noise is about 92 dBA, and 87-89 dBA to gun noise. These results are in general agreement with those of study of railway workers by Prosser et al. [Br. J. Audiol. 22, 85-91 (1988)]. Asymmetries in losses between the two ears, effects of ear protection, losses from nosocusis, and losses from sport, as compared to military, gun noise exposures, are examined.  相似文献   

17.
Field studies: industrial exposures   总被引:1,自引:0,他引:1  
The databases and models for the prediction of noise-induced permanent threshold shift (NIPTS) from industrial noise exposures are reviewed. Models available in 1973, compared with later models and data, are shown still to be reasonable. The effect of hearing conservation procedures on the acquisition of new data is discussed. Because of the impact of hearing conservation, new research focus is recommended in three areas: sex differences, newly hired individuals exposed for the first time in occupational noise, and the contribution of nonoccupational noise through the use of questionnaires and dosimetry.  相似文献   

18.
Current noise guidelines use an energy-based noise metric to predict the risk of hearing loss, and thus ignore the effect of temporal characteristics of the noise. The practice is widely considered to underestimate the risk of a complex noise environment, where impulsive noises are embedded in a steady-state noise. A basic form for noise metrics is designed by combining the equivalent sound pressure level (SPL) and a temporal correction term defined as a function of kurtosis of the noise. Several noise metrics are developed by varying this basic form and evaluated utilizing existing chinchilla noise exposure data. It is shown that the kurtosis correction term significantly improves the correlation of the noise metric with the measured hearing losses in chinchillas. The average SPL of the frequency components of the noise that define the hearing loss with a kurtosis correction term is identified as the best noise metric among tested. One of the investigated metrics, the kurtosis-corrected A-weighted SPL, is applied to a human exposure study data as a preview of applying the metrics to human guidelines. The possibility of applying the noise metrics to human guidelines is discussed.  相似文献   

19.
The interaction of noise exposure with other variables is reviewed. For the case of the interaction of noise with other variables that produce behavioral threshold shifts, the application of a newly developed model is described and demonstrated. This model, referred to as the modified power-law model, provides an accurate prediction of the combined effects of two threshold-elevating factors. The model accounts for the interaction of post-exposure a pre-existing pre-existing permanent loss or a pre-existing temporary loss. The model's application is demonstrated for multiple exposures to steady-state noise in which each exposure lasts as short as 12 min or as long as 6 h. Finally, implications of the model's application to the interaction long as 6 h. Finally, implications of the model's application to the interaction of noise with other ototraumatic agents are reviewed.  相似文献   

20.
Information regarding the relation of human temporary threshold shift (TTS) to properties of steady-state and intermittent noise published since the 1966 appearance of the CHABA damage risk contours is reviewed. The review focuses on results from four investigative areas relevant to potential revision of the CHABA contours including effects of long-duration exposure and asymptotic threshold shifts (ATS); equivalent quiet and/or safe noise levels; effects of intermittency; and use of noise-induced temporary threshold shift (NITTS) to predict susceptibility to noise-induced permanent threshold shift (NIPTS). These data indicate that two of three major postulates on which the original contours were based are not valid. First, recovery from TTS is not independent of the conditions that produced the TTS as was assumed. Second, the assumption that all exposures that produce equal TTS2 are equally hazardous is not substantiated. The third postulate was that NIPTS produced by 10 years of daily exposure is approximately equal to the TTS2 produced by the same noise after an 8-h exposure. Based upon several TTS experiments showing that TTS reaches an asymptote after about 8 h of exposure, the third CHABA postulate can be reworded to state the hypothesis that ATS produced by sound of fixed level and spectrum represents an upper bound on PTS produced by that sound regardless of the exposure duration or the number of times exposed. This hypothesis has a strong, logical foundation if ATS represents a true asymptote for TTS, not a temporary plateau, and if threshold shifts do not increase after the noise exposure ceases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号