首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Buchapudi KR  Huang X  Yang X  Ji HF  Thundat T 《The Analyst》2011,136(8):1539-1556
In the last fifteen years, microcantilevers (MCLs) have been emerging as a sensitive tool for the detection of chemicals and bioorganisms. Because of their small size, lightweight, and high surface-to-volume ratio, MCL-based sensors improve our capability to detect and identify biological agents by orders of magnitude. A biosensor is a device for the detection of an analyte that combines a biological component with a physicochemical detector component. The MCL biosensors have recently been reviewed in several papers. All of these papers were organized based on the sensing biological elements (antibody, enzyme, proteins, etc.) for recognition of analytes. In this review, we intend to summarize the microcantilever biosensors in a format of each specific chemical and bioorganism species to make information on individual biosensors easily accessible. We did this to aid researchers to locate relevant references.  相似文献   

2.
《Electroanalysis》2005,17(1):7-14
This review addresses recent advances in carbon‐nanotubes (CNT) based electrochemical biosensors. The unique chemical and physical properties of CNT have paved the way to new and improved sensing devices, in general, and electrochemical biosensors, in particular. CNT‐based electrochemical transducers offer substantial improvements in the performance of amperometric enzyme electrodes, immunosensors and nucleic‐acid sensing devices. The greatly enhanced electrochemical reactivity of hydrogen peroxide and NADH at CNT‐modified electrodes makes these nanomaterials extremely attractive for numerous oxidase‐ and dehydrogenase‐based amperometric biosensors. Aligned CNT “forests” can act as molecular wires to allow efficient electron transfer between the underlying electrode and the redox centers of enzymes. Bioaffinity devices utilizing enzyme tags can greatly benefit from the enhanced response of the biocatalytic‐reaction product at the CNT transducer and from CNT amplification platforms carrying multiple tags. Common designs of CNT‐based biosensors are discussed, along with practical examples of such devices. The successful realization of CNT‐based biosensors requires proper control of their chemical and physical properties, as well as their functionalization and surface immobilization.  相似文献   

3.
《Electroanalysis》2006,18(5):465-470
Nickel and platinum find extensive use in preparation of biosensors. In the present work, Ni/Pt alloy was plated on graphite to make acetylcholine sensor. The microstructure, surface composition and electrochemical performance of the electrode was analyzed by different techniques. The sensing performance was evaluated by cyclic voltammetry. The prepared alloy plate exhibited very good linear relationship between acetyl choline concentration and response current. The sensitivity and reproducibility of the prepared electrode were found better than other nickel electrodes reported.  相似文献   

4.
The surface grafting density of biomolecules is an important factor for quantitative assays using a wide range of biological sensors. We use a fluorescent measurement technique to characterize the immobilization density of thiolated probe DNA on gold and hybridization efficiency of target DNA as a function of oligonucleotide length and salt concentration. The results indicate the dominance of osmotic and hydration forces in different regimes of salt concentration, which was used to validate previous simulations and to optimize the performance of surface-stress based microcantilever biosensors. The difference in hybridization density between complementary and mismatched target sequences was also measured to understand the response of these sensors in base-pair mismatch detection experiments. Finally, two different techniques for immobilizing proteins on gold were considered and the surface densities obtained in both cases were compared.  相似文献   

5.
The asymmetric roughening of silicon microcantilevers using different vapor stain‐etching conditions is studied with the aim of optimizing face selective coating of microcantilevers by polymers through simple dipping. The effect of roughening is studied by following the time‐dependent guest‐induced bending of silicone microcantilevers coated with a poly‐4‐vinylpyridine sensing layer. A correlation between the surface roughness of the microcantilevers and their time‐dependent guest‐induced bending is gained from combining high resolution scanning electron microscopy studies of the surface of the microcantilevers as well as their cross‐sections with time‐dependent guest‐induced microcantilever bending. The purpose of the present work is to lay the foundations for a small and relatively simple gas‐phase sensing tool based on a microcantilever platform capable of offering wide range sensing capabilities. © 2013 Wiley Periodicals, 2014 , 52, 141–146  相似文献   

6.
A silicon microcantilever sensor was developed for the detection of Escherichia coli O157:H7. The microcantilever was modified by anti-E. coli O157:H7 antibodies on the silicon surface of the cantilever. When the aquaria E. coli O157:H7 positive sample is injected into the fluid cell where the microcantilever is held, the microcantilever bends upon the recognition of the E. coli O157:H7 antigen by the antibodies on the surface of the microcantilever. A negative control sample that does not contain E. coli O157:H7 antigen did not cause any bending of the microcantilever. The detection limit of the sensor was 1 x 10(6) cfu/mL when the assay time was < 2 h.  相似文献   

7.
We report a novel approach to the design and development of microcantilever sensors in which photochemical hydrosilylation is used to modify the microcantilever surface. This process enables individual microcantilevers in multicantilever array chips to be modified separately by focusing the activating UV light sequentially on each particular cantilever. Photochemical hydrosilylation of 11-undecenyltriethylammonium bromide with hydrogen-terminated silicon microcantilever surfaces was carried out to yield a robust quaternary ammonium terminated organic monolayer suitable for chromate detection. The surface functionalities retain their affinity toward Cr(VI), and the organic monolayer is dense enough to generate significant surface stress upon subsequent adsorption of chromate ions from aqueous solutions.  相似文献   

8.
Sensitive optical biosensors for unlabeled targets: a review   总被引:1,自引:0,他引:1  
  相似文献   

9.
A potential binding assay based on conformational-change-induced micromechanical motion is described. Calmodulin was used to modify a microcantilever (MCL) by a self-assembled layer-by-layer approach. The results showed that the modified MCL bent when the proteins changed their conformation upon binding with Ca2+. The cantilever deflection amplitudes were different under different ionic strengths, indicating different degrees of conformational change of the proteins in these conditions. On the contrary, cantilevers modified by proteins, such as hemoglobin and myoglobin, that do not change conformations upon binding with analytes do not cause the cantilever deflection. These results suggest that the conformational changes of proteins may be used to develop cantilever biosensors, and the MCL system has potential for use in label-free, protein-analyte screening applications.  相似文献   

10.
Stimulus-responsive elastin-like polypeptides (ELPs) grafted onto surfaces are of significant technical interest because they can be exploited for force generation, in sensing applications, or as molecular switches with tunable properties. Changes in the conformational state of grafted ELPs, induced by a phase transition or changes in osmotic pressure, lead to significant changes in the surface stress in the ELP graft layer and translate into detectable changes in microcantilever deflection. In this study, we investigate the conformational mechanics of ELPs in response to changes in solution pH and ionic strength using atomic force microscopy (AFM) microcantilever deflection and quartz crystal microbalance (QCM) measurements. We show that the use of genetically encoded, surface-grafted ELPs is exciting for cantilever actuation and sensing because commonly available microfabricated cantilever springs offer a simple and nonintrusive way to detect changes in solvent type, temperature, and pH, promising great potential for sensing applications in microfluidic devices.  相似文献   

11.
Ji HF  Gao H  Buchapudi KR  Yang X  Xu X  Schulte MK 《The Analyst》2008,133(4):434-443
Microcantilevers (MCLs) hold a position as a cost-effective and highly sensitive sensor platform for medical diagnostics, environmental analysis and fast throughput analysis. MCLs are unique in that adsorption of analytes on the microcantilever (MCL) surface changes the surface characteristics of the MCL and results in bending of the MCL. Surface stress due to conformation change of proteins and other polymers has been a recent focus of MCL research. Since conformational changes in proteins can be produced through binding of anylates at specific receptor sites, MCLs that respond to conformational change induced surface stress are promising as transducers of chemical information and are ideal for developing microcantilever-based biosensors. The MCL can also potentially be used to investigate conformational change of proteins induced by non-binding events such as post-translational modification and changes in temperature or pH. This review will provide an overview of MCL biosensors based on conformational change of proteins bound to the MCL surface. The models include conformational change of proteins, proteins on membranes, enzymes, DNA and other polymers.  相似文献   

12.
MXenes are a new group of 2D nanomaterials with fascinating properties including high electrical conductivity, hydrophilic nature, easily tunable structure and high surface area. This is why MXene modified interfaces are extremely promising for the preparation of sensitive electrochemical biosensors. While there are numerous reports on MXene‐based enzymatic biosensors for detection of a wide range of analytes, application of MXene for construction of affinity biosensors is in its infancy. The review article summarizes current state‐of the‐art in the field with a focus on MXene modifications needed for construction of robust and high performance MXene electrochemical biosensors.  相似文献   

13.
14.
A combination of the electroactive polymer poly(brilliant green) (PBG) or conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with carbon nanotubes to obtain CNT/PBG and CNT/PEDOT modified carbon film electrodes (CFE) has been investigated as a new biosensor platform, incorporating the enzymes glucose oxidase (GOx) as test enzyme, alcohol oxidase (AlcOx) or alcohol dehydrogenase (AlcDH). The sensing parameters were optimized for all biosensors based on CNT/PBG/CFE, CNT/PEDOT/CFE platforms. Under optimized conditions, both GOx biosensors exhibited very similar sensitivities, while in the case of AlcOx and AlcDH biosensors, AlcOx/CNT/PBG/CFE was found to give a higher sensitivity and lower detection limit. The influence of dissolved O2 on oxidase-biosensor performance was investigated and was shown to be different for each enzyme. Comparisons were made with similar reported biosensors, showing the advantages of the new biosensors, and excellent selectivity against potential interferents was successfully demonstrated. Finally, alcohol biosensors were successfully used for the determination of ethanol in alcoholic beverages.  相似文献   

15.
以酪蛋白酸钠和明胶为原料, 通过简单的在硫酸铵溶液中浸泡的方法, 借助Hofmeister效应制备了一种强韧导电的酪蛋白酸钠/明胶水凝胶, 克服了蛋白质基水凝胶柔软、 易碎的问题. 测试结果表明, 该水凝胶具有优异的机械性能, 最大拉伸应力为3.55 MPa, 最大拉伸应变为1375%; 水凝胶的最大电导率为0.0954 S/cm, 导电灵敏因子为0.53. 用该水凝胶制备的传感器对不同大小及不同速率的应变均具有分辨能力, 能够监测人体不同部位的运动, 且传感器的信号传输具有稳定性和准确性, 表明该水凝胶是监测人体健康和运动的理想材料. 该水凝胶还具有良好的形状记忆性能. 这一策略为制备全天然蛋白质基水凝胶开辟了新的思路, 扩展了水凝胶在生物医学和电子传感等相关领域的应用前景.  相似文献   

16.
基于适配子构建了无标记检测三磷酸腺苷(ATP)的微悬臂梁生物传感器。 将ATP适配子修饰在微悬臂梁阵列中的传感悬臂镀金面上,用来识别ATP,而参比悬臂修饰巯基己醇(MCH)防止非特异性吸附。 ATP与其适配子发生特异性相互作用,使悬臂的上下两个表面产生应力差,导致传感悬臂产生偏转,扣除参比悬臂偏转后其偏转值与ATP的浓度在0.5~5 mmol/L范围内有良好的线性关系,相关系数为0.998,最低检出限为0.06 mmol/L。 该微悬臂梁生物传感器响应快速、操作简单,并且对ATP具有良好的特异性。  相似文献   

17.
Zuo G  Li X  Li P  Yang T  Wang Y  Cheng Z  Feng S 《Analytica chimica acta》2006,580(2):123-127
Using piezoresistive SiO2 microcantilever technology, we present an ultra-sensitive chemical sensor for trace organophosphorus vapor detection. A self-assembled composite layer of Cu2+/11-mercaptoundecanoic acid is modified on the surface of the sensing cantilever as a specific coating to capture PO containing compounds. Experimental results indicate that the sensor can be quite sensitive to DMMP vapor (well known as a simulant of nerve agent). The signal-noise-limited detection resolution of the sensor is experimentally obtained as low as several parts per billion. Besides that the sensor can yield reversible and repeatable response to DMMP vapor, adsorption of DMMP on the self-assembled composite layer is well fit to the Langmuir isotherm model.  相似文献   

18.
NADH electrochemical sensor development has been one of the most studied areas of bioelectroanalysis because of the ubiquity of NAD(P)H based enzymatic reactions in nature. The different solutions proposed are still far from the realisation of the “ideal” NADH sensor and the research area is still challenging. The principles and the recent approaches in NADH electrochemical sensing design are reported in this review. An overview of selected examples and novel sensor materials for the electrocatalysis of NADH is given with emphasis on the appropriate design to obtain improved performances. The literature data taken in consideration has been grouped depending on the strategy used in: surface modified electrodes for NADH sensing, surface redox mediated NADH probes, and bulk modified electrodes for the electrocatalytic oxidation of NADH. A list of already reported dehydrogenase-based biosensors is also given.  相似文献   

19.
杨笑鹤  杨强  杨昊  王立  陈裕泉 《分析化学》2007,35(12):1751-1755
从碳黑表面引发苯乙烯磺酸钠的原子转移自由基聚合制备了聚(苯乙烯磺酸钠)改性碳黑(CB-g-PSS),并分别以掺杂和沉积两种不同方式修饰电极的生物敏感膜,再在生物敏感膜上吸附固定葡萄糖氧化酶,制作了两种葡萄糖氧化酶传感器,得到了不同的效果.实验结果表明,将CB-g-PSS与成膜材料掺杂制作的生物传感器与无修饰传感器相比,响应灵敏度下降了1/3;将CB-g-PSS沉积修饰丝网印刷碳糊电极制作的传感器与无修饰传感器相比,响应灵敏度提高了2倍,且对1.1~33.3 mmoL/L的葡萄糖待测样本,RSD均<7%,稳定性良好,有较高的应用价值.通过实验分析了CB-g-PSS以不同方式修饰电极的工作机理,结果表明,选择正确的修饰方式,能够发挥CB-g-PSS的导电效应及纳米效应,使其有利于酶的固定,提高响应灵敏度并改善酶促反应动力学特性.  相似文献   

20.
Sensing interfaces where molecular recognition processes occur plays a central role in biosensors, which directly affect the biosensing sensitivity, specificity, stability, and response dynamics. However, the target accessibility of conventional sensing interfaces is limited, resulting in low molecular recognition efficiency. Engineering the sensing interfaces of biosensors provides an effective strategy to improve the performance of the biosensors. In this review, we summarize recent advances during the past two years in the development of biosensing interface engineering for enhanced electrochemical sensing. Three types of emerging engineering approaches, including constructing nanostructured sensing interfaces, molecule-mediated interfacial regulation, and functionalizing the interfaces with self-assembled DNA nanostructures, especially framework nucleic acid, are discussed. Also, the remaining challenges and opportunities are outlined for the important research area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号