首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Custom-made macrocyclic receptors for fullerenes are proving a valuable alternative to achieve the affinity and selectivity required to meet challenges such as the selective extraction of higher fullerenes, their chiral resolution, or the self-assembly of functional molecular materials. In this Minireview, we highlight some of the important breakthroughs that this class of fullerene hosts has already produced.  相似文献   

2.
Carbon nanomaterials have been at the forefront of nanotechnology since its inception. At the heart of this research are the curved carbon nanomaterial families: fullerenes and carbon nanotubes. While both have incredible properties that have been capitalized upon in a wide variety of applications, there is an aspect that is not commonly exploited by nanoscientists and organic chemists alike: the interaction of curved carbon nanomaterials with curved organic small molecules. By taking advantage of these interactions, new avenues are opened for the use of fullerenes and carbon nanotubes.  相似文献   

3.
We report the synthesis and characterization of a novel type of nanohoop, consisting of a cycloparaphenylene derivative incorporating a curved heptagon-containing π-extended polycyclic aromatic hydrocarbon (PAH) unit. We demonstrate that this new macrocycle behaves as a supramolecular receptor of curved π-systems such as fullerenes C60 and C70, with remarkably large binding constants (ca. 107 M−1), as estimated by fluorescence measurements. Nanosecond and femtosecond spectroscopic analysis show that these host-guest complexes are capable of quasi-instantaneous charge separation upon photoexcitation, due to the ultrafast charge transfer from the macrocycle to the complexed fullerene. These results demonstrate saddle-shaped PAHs with dibenzocycloheptatrienone motifs as structural components for new macrocycles displaying molecular receptor abilities and versatile photochemical responses with promising electron-donor properties in host-guest complexes.  相似文献   

4.
The calixarene-Mn(4)-calixarene dumbbell-like unit can accommodate different fullerenes with its changeable curved surfaces and the addition of fullerenes completely remodels the packing of the dumbbell units.  相似文献   

5.
Exploiting the shape and electronic complementarity of C(60) and C(70) with π-extended derivatives of tetrathiafulvalene (exTTF), we have very recently reported a macrocyclic receptor featuring two exTTF recognizing units which forms 1:1 complexes with C(60) with log K(a) = 6.5 ± 0.5 in chlorobenzene at 298 K. This represents one of the highest binding constants toward C(60) reported to date and a world-record for all-organic receptors. Here, we describe our efforts to fine-tune our macrocyclic bis-exTTF hosts to bind C(60) and/or C(70), through structural variations. On the basis of preliminary molecular modeling, we have explored p-xylene, m-xylene, and 2,6-dimethylnaphthalene as aromatic spacers between the two exTTF fragments and three alkene-terminated chains of different length to achieve macrocycles of different size through ring closing metathesis. Owing to the structural simplicity of our design, all nine receptors could be accessed in a synthetically straightforward manner. A thorough investigation of the binding abilities of these nine receptors toward C(60) and C(70) has been carried out by means of UV-vis titrations. We have found that relatively small variations in the structure of the host lead to very significant changes in affinity toward the fullerene, and in some cases even in the stoichiometry of the associates. Our results highlight the peculiarities of fullerenes as guests in molecular recognition. The extreme stability of these associates in solution and the unique combination of electronic and geometrical reciprocity of exTTF and fullerenes are the main features of this new family of macrocyclic hosts for fullerenes.  相似文献   

6.
Molecular machines are molecular-scale devices that carry out predetermined tasks derived from molecular motion. This Minireview illustrates how fullerenes can be used as multitask building blocks in molecular machinery, providing new perspectives for fullerenes. Indeed, C(60) can be applied as a photo- and electroactive stopper owing to its size, as a probe for molecular motion as a result of its well-defined physicochemical properties, and to induce motion through pi-pi interactions. Such molecular motion can be employed to modulate light-driven electron-transfer events, extending the potential applications of molecular machines to the typical fields of application of fullerenes.  相似文献   

7.
The development of new chromophoric receptors capable of binding curved carbon nanostructures is central to the quest for improved fullerene-based organic photovoltaics. We herein report the synthesis and characterization of a subphthalocyanine-based multicomponent ensemble consisting of two electron-rich SubPc-monomers rigidly attached to the convex surface of an electron-poor SubPc-dimer. Such a unique configuration, especially in terms of the two SubPc-monomers, together with the overall stiffness of the linker, endows the multicomponent system with a well-defined tweezer-like topology to efficiently embrace a fullerene in its inner cavity. The formation of a 1 : 1 complex was demonstrated in a variety of titration studies with either C60 or C70. In solution, the underlying association constants were of the order of 105 M−1. Detailed physicochemical experiments revealed a complex scenario of energy- and electron-transfer processes upon photoexcitation in the absence and presence of fullerenes. The close proximity of the fullerenes to the electron-rich SubPcs enables a charge shift from the initially formed reduced SubPc-dimer to either C60 to C70.

A tweezer-like subphthalocyanine-based ensemble has been developed for the selective recognition of fullerenes. The physicochemical properties of both the photoactive receptor and its inclusion complexes with fullerenes have been investigated.  相似文献   

8.
Multi-shell fullerenes are widely studied for their interesting properties although comparative studies on single- and multi-shell structures remain scarce. In this work, important electronic features of single- and double-shell icosahedral fullerenes as a function of their sizes were calculated in the framework of the density functional theory. Fully optimized structures were used to get the gap between the highest occupied molecular and the lowest unoccupied molecular orbital (H-L gap), electronegativity, softness and density of the electronic states. This work shows that the H-L gap of the single-shell fullerenes decreases nonlinearly as the nanoparticles size increases, whereas for the double-shell fullerenes an opposite trend is obtained. A decrease of the H-L gap is found going from single- to double-shell fullerenes with similar external sizes, up to a diameter of 3.13 nm. The electron density of states revealed that isolated peaks give way to more dense electronic states for nanoparticles with diameters above 2 nm.  相似文献   

9.
Density functional calculations have been carried out on a series of BCN hybrid fullerenes with certain substitution patterns in comparison with their parent compounds Cn (n = 30, 32, 36, 38, 40, 44, 48, 50, 52). The substitutional structures, energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, ionization potentials, electron affinities, as well as molecular electrostatic potentials have been systematically investigated. The following important points of BCN hybrid fullerenes are stressed: The present studied fullerenes, comprising tubular "belt" and polar "cap", could be divided into three types of structure; each has different indexes of tubular structure and terminal caps. The properties of BCN hybrid fullerenes depend on the type of "tubular belt + polar cap" structures, especially, the HOMO and LUMO characters and MEPs of BCN fullerene are strongly governed by their structure types.  相似文献   

10.
Quantum chemical studies on the molecular hydrogen adsorption in a six-membered carbon ring has been undertaken to mimic the adsorption process in carbon nanotubes, considering the fact that the six-membered carbon ring is found to be one of the basic units of the carbon nanotubes and fullerenes. Our results reveal that the carbon surface as such is not a good candidate for hydrogen adsorption but a charged surface created by doping of an alkali metal atom can play an important role for the improvement in adsorption of molecular hydrogen. The strength of hydrogen interaction as well as the number of hydrogen molecules that can be adsorbed on the system is found to depend on the nature of the cation doped in the system. We have also studied the role of electronic induction by substituting different functional groups in the model system on the hydrogen adsorption energy. The results demonstrate that the binding energy of the cation with the carbon surface as well as the hydrogen adsorption energy can be tuned significantly through the use of suitable substituents. In addition, we have shown that the extended planar or the curved carbon surface of the coronene system alone may not be suitable for an effective molecular hydrogen adsorption. In essence, our results reveal that the ionic surface with a significant degree of curvature will enhance the hydrogen adsorption effectively.  相似文献   

11.
This review concerns the fullerene black, a poorly known nano-sized carbon material, the insoluble residue after extraction of fullerenes from fullerene soot obtained by arc vaporization of carbon material (usually graphite) in a helium atmosphere. This by-product of the production of fullerenes, whose yield reaches 80 wt %, is a finely dispersed material with a particle size of 40–50 nm. It includes amorphous carbon, graphitized particles, and graphite. Test reactions showed the presence in the structure of fullerene black of curved surfaces, and, like fullerenes, of alternating nonconjugated ordinary and double bonds. In addition to the double bonds, its structure includes dangling bonds in the concentration not higher than one per 1200 carbon atoms. Fullerene black absorbs oxygen from the atmosphere and water, and enters into the reactions of nucleophilic addition. The fullerene black cannot be graphitized, and its application is extremely important. The fullerene black was shown to activate hydrogen and thus to undergo a hydrogenolysis in the absence of a catalyst and to catalyze the dehydrogenation and dehydrocyclization of alkanes. This carbon nanomaterial can be used as a sorbent and a catalyst carrier, a tribotechnical additive; it can interact with carbide-forming metals and harden their surface.  相似文献   

12.
We have carried out atomistic molecular dynamics simulations of C60 fullerenes inside a dimyristoylphosphatidylcholine lipid bilayer and an alkane melt. Simulations reveal that the preferred position of a single C60 fullerene is about 6-7 A off of the center plane, allowing the fullerene to take advantage of strong dispersion interactions with denser regions of the bilayer. Further displacement (>8 A) of the fullerene away from the center plane results in a rapid increase in free energy likely due to distortion of the lipid head group layer. The effective interaction between fullerenes (direct interaction plus environment (bilayer)-induced interaction), measured as the potential of mean force (POMF) between two fullerenes as a function of their separation, was found to be significantly less attractive in the lipid bilayer than in an alkane melt of the same molecular weight as the lipid tails. Only part of this difference can be accounted for by the more favorable interaction of the fullerene with the relatively denser bilayer. Additionally, our POMF studies indicate that the bilayer is less able to accommodate the larger aggregated fullerene pair than isolated single fullerenes, again likely due to distortion of the bilayer structure. The implications of these effects on aggregation of fullerenes within lipid bilayer are considered.  相似文献   

13.
Kekule structures of different carbon species have been determined. On the basis of Kekule structure and C-C bond counts as well as the surface curvature, stability of diverse carbon species, driving force for curling of graphite fragments and formation of fullerenes and nanotubes, have been discussed. Curling of graphite flat fragments, end-capping of nanotubes, and closure of curved structures are driven by a tremendous increase in Kekule structures as terminal carbon atoms couple their dangling bonds into C-C o bonds. The increasing tendency becomes particularly striking for large cages and nanotubes. Resonance among numerous Kekule structures will stabilize the curved structure and dominate formation of closed carbon species. For similar carbon cages with comparable Kekule structure counts in magnitude, the surface curvature of carbon cages, as a measure for the strain energy, also plays an important role in determining their most stable forms.  相似文献   

14.
Anisotropy of intermolecular and molecule-substrate interactions holds the key to controlling the arrangement of fullerenes into 2D self-assembled monolayers (SAMs). The chemical reactivity of fullerenes allows functionalization of the carbon cages with sulfur-containing groups, thiols and thioethers, which facilitates the reliable adsorption of these molecules on gold substrates. A series of structurally related molecules, eight of which are new fullerene compounds, allows systematic investigation of the structural and functional parameters defining the geometry of fullerene SAMs. Scanning tunnelling microscopy (STM) measurements reveal that the chemical nature of the anchoring group appears to be crucial for the long-range order in fullerenes: the assembly of thiol-functionalized fullerenes is governed by strong molecule-surface interactions, which prohibit formation of ordered molecular arrays, while thioether-functionalized fullerenes, which have a weaker interaction with the surface than the thiols, form a variety of ordered 2D molecular arrays owing to noncovalent intermolecular interactions. A linear row of fullerene molecules is a recurring structural feature of the ordered SAMs, but the relative alignment and the spacing between the fullerene rows is strongly dependent on the size and shape of the spacer group linking the fullerene cage and the anchoring group. Careful control of the chemical functionality on the carbon cages enables positioning of fullerenes into at least four different packing arrangements, none of which have been observed before. Our new strategy for the controlled arrangement of fullerenes on surfaces at the molecular level will advance the development of practical applications for these nanomaterials.  相似文献   

15.
Functionalized fullerenes have shown interesting biomedical applications as potential phototherapeutic agents. The hydrophobic carbon sphere of fullerene C60 can be substituted by cationic groups to obtain amphiphilic structures. These compounds absorb mainly UV light, but absorption in the visible region can be enhanced by anchoring light-harvesting antennas to the C60 core. Upon photoexcitation, fullerenes act as spin converters by effective intersystem crossing. From this excited state, they can react with ground state molecular oxygen and other substrates to form reactive oxygen species. This process leads to the formation of singlet molecular oxygen by energy transfer or superoxide anion radical by electron transfer. Photodynamic inactivation experiments indicate that cationic fullerenes are highly effective photosensitizers with applications as broad-spectrum antimicrobial agents. In these structures, the hydrophobic character of C60 improves membrane penetration, while the presence of positive charges increases the binding of the fullerene derivatives with microbial cells. Herein, we summarize the progress of antimicrobial photodynamic inactivation based on substituted fullerenes specially designed to improve the photodynamic activity.  相似文献   

16.
The aggregation behavior of C60 fullerenes and C60 fullerenes with six symmetrically tethered poly(ethylene oxide) oligomers [(PEO)-6-C60] in aqueous solutions has been studied using implicit solvent molecular dynamics simulations. Our simulations reveal that while the attraction between two (PEO)-6-C60 fullerenes in aqueous solution is stronger and longer range than that between two bare C60 fullerenes, the (PEO)-6-C60 fullerenes do not phase-separate in water but rather aggregate in chain-like clusters at concentrations where unmodified fullerenes completely phase-separate.  相似文献   

17.
内嵌稀土元素的富勒烯化合物一稀土富勒烯Lit@CZ。是一类新型的化合物.它具有独特的“超分子结构和巨大的潜在用途,将在未来的功能材料开发中起到不可估量的作用[‘].目前关干稀土富勒烯的研究主要集中于稀土富勒烯的合成、分离、纯化、表征和理论方面.关于稀土富勒烯化  相似文献   

18.
We present follow-up studies on the formation mechanism of fullerene molecules from random ensembles of C2 molecules using quantum chemical molecular dynamics. Two possible roadmaps are investigated as to how buckminsterfullerene C60 and higher fullerenes could be formed. In a "size-up" scenario, fullerenes of the cage size of C72-C96 were found to form directly from high concentrations of C2 molecules at 2000 K with periodic supply of batches of additional C2's. In a "size-down" approach, smaller fullerenes are sometimes formed by losing carbon fragments in "fall-off" or "pop-out" annealing processes under prolonged heating of giant fullerenes, which were self-assembled at initial stages from C2's with lower concentrations. Both roadmaps are found to provide explanations for the appearance of C60 and larger fullerenes in combustion and carbon arc experiments.  相似文献   

19.
It is known that silicon fullerenes cannot maintain perfect cage structures like carbon fullerenes. Previous density-functional theory calculations have shown that even with encapsulated species, nearly all endohedral silicon fullerenes exhibit highly puckered cage structures in comparison with their carbon counterparts. In this work, we present theoretical evidences that the tetrahedral fullerene cage Si(28) can be fully stabilized by encapsulating a tetrahedral metallic cluster (Al(4) or Ga(4)). To our knowledge, this is the first predicted endohedral silicon fullerene that can retain perfectly the same cage structure (without puckering) as the carbon fullerene counterpart (T(d)-C(28) fullerene). Density-functional theory calculations also suggest that the two endohedral metallosilicon fullerenes T(d)-M(4)@Si(28) (M=Al and Ga) can be chemically stable because both clusters have a large highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap ( approximately 0.9 eV), strong spherical aromaticity (nucleus-independent chemical shift value of -36 and -44), and large binding and embedding energies.  相似文献   

20.
The molecular encapsulation of functionalized fullerenes (substituted fulleropyrrolidines) with water-soluble calixarenes was studied by photoluminescence and quantum-chemical methods. The results show that both the thiacalix[4]arene-tetrasulfonate and calix[6]arene-hexasulfonate are able to overcome the natural water-repulsive character of fullerenes. However, the functionalization of calixarenes and fullerenes induces significant changes in the molecular encapsulation processes, and the obtained thermodynamic behavior of the complex formation highlights the importance of the entropy. Our results can contribute to the development of the synthesis and design of functionalized calixarenes supporting their application in pharmaceutical and food chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号