首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phase shifts due to optical pumping have been measured in a Nd3+-doped fibre amplifier. The measurements were made with a two-fibre Mach-Zehnder interferometer. It is shown that phase shifts are mainly due to fibre heating. The results are compared with heat transport theory.  相似文献   

2.
We compare T2-relaxation and diffusion tensor data from normal human brain. The relationships between myelin-water fraction (MWF) and various diffusion tensor measures [e.g., fractional anisotropy (FA), perpendicular diffusivity (ADC perpendicular) and mean diffusivity ] in white matter (WM) and gray matter (GM) structures in the brain were examined in 16 normal volunteers at 1.5 T and 6 normal subjects at 3.0 T and mean diffusivity. We found some degree of linear correlation between these measurements, but by using region of interest (ROI)-based analysis, we also observed several structures which seemed to deviate significantly from a linear relationship. From all investigated relationships between various diffusion tensor measures and myelin-water content, FA and ADC perpendicular yielded the highest correlation coefficients with MWF. However, diffusion anisotropy was also significantly influenced by factors other than myelin-water content. The less operator-dependent voxel-based analysis (VBA) between myelin-water and diffusional anisotropy measures is proposed as an innovative alternative to ROI-based analysis. We confirmed that WM structures, in general, have higher diffusional anisotropy than GM structures and also have higher myelin-water content. However, our findings suggest that in the highly organized fibre arrangement of compact WM structures such as the genu of the corpus callosum, elevated degrees of diffusional anisotropies are measured, which do not necessarily correspond to an elevated myelin content but more likely reflect the highly organized directionality of fibre bundles in these areas (low microscopic and macroscopic tortuosity) as well as strongly restricted diffusion in the interstitial space between the myelinated axons. Conversely, in structures with disorganized fibre bundles and multiple fibre crossings, such as the minor and major forceps, low FA values were measured, which does not necessarily reflect a decrease myelin-water content.  相似文献   

3.
This study investigated the properties of a class of rotationally invariant and symmetric (relative to the principal diffusivities) indices of the anisotropy of water self-diffusion, namely fractional anisotropy (FA), relative anisotropy (RA), and volume ratio (VR), with particular emphasis to their measurement in brain tissues. A simplified theoretical analysis predicted significant differences in the sensitivities of the anisotropy indices (AI) over the distribution of the principal diffusivities. Computer simulations were used to investigate the effects on AI image quality of three magnetic resonance (MR) diffusion tensor imaging (DTI) acquisition schemes, one being novel: the schemes were simulated on cerebral model fibres varying in shape and spatial orientation. The theoretical predictions and the results of the simulations were corroborated by experimentally determined spatial maps of the AI in a normal feline brain in vivo. We found that FA mapped diffusion anisotropy with the greatest detail and SNR whereas VR provided the strongest contrast between low- and high-anisotropy areas at the expense of increased noise contamination and decreased resolution in anisotropic regions. RA proved intermediate in quality. By sampling the space of the effective diffusion ellipsoid more densely and uniformly and requiring the same total imaging time as the published schemes, the novel DTI scheme achieved greater rotational invariance than the published schemes, with improved noise characteristics, resulting in improved image quality of the AI examined. Our findings suggest that significant improvements in diffusion anisotropy mapping are possible and provide criteria for the selection of the most appropriate AI for a particular application.  相似文献   

4.
We theoretically and experimentally analyze the pinning of a magnetic domain wall (DW) at engineered anisotropy variations in Pt/Co/Pt strips with perpendicular magnetic anisotropy. An analytical model is derived showing that a step in the anisotropy acts as an energy barrier for the DW. Quantitative measurements are performed showing that the anisotropy can be controlled by focused ion beam irradiation with Ga ions. This tool is used to experimentally study the field-induced switching of nanostrips which are locally irradiated. The boundary of the irradiated area indeed acts as a pinning barrier for the domain wall and the pinning strength increases with the anisotropy difference. Varying the thickness of the Co layer provides an additional way to tune the anisotropy, and it is shown that a thinner Co layer gives a higher starting anisotropy thereby allowing tunable DW pinning in a wider range of fields. Finally, we demonstrate that not only the anisotropy itself, but also the width of the anisotropy barrier can be tuned on the length scale of the domain wall.  相似文献   

5.
康玉清  曹茂盛  袁杰  房晓勇 《中国物理 B》2010,19(1):17701-017701
The influence of orientation on electromagnetic properties of basalt fibre/nickel core--shell heterostructures prepared by a simple electroless plating method is investigated. For comparison, the same investigation is also performed on naked basalt fibres. For electromagnetic measurement, the directions of basalt fibre/nickel and naked basalt fibres are parallel, random and perpendicular to the direction of external electric field, termed E_\vert\vert sample, random sample and E sample, respectively. Electromagnetic anisotropy can be clearly observed in the basalt fibre/nickel core--shell heterostructures, while electromagnetic properties of naked basalt fibres are unrelated to the orientation. The E basalt fibre/nickel shows the highest dielectric loss but the lowest magnetic loss, and E|| basalt fibre/nickel exhibits the highest magnetic loss but the lowest dielectric loss. The dielectric loss of E basalt fibre/nickel is several times as large as that of E|| basalt fibre/nickel, which could be attributed to the increase of polarization relaxation time as a consequence of the nanosize-confinement effect. The magnetic loss of E|| basalt fibre/nickel is even one order of magnitude higher than that of E basalt fibre/nickel, which originates mainly from the natural magnetic resonance of basalt fibre/nickel core--shell heterostructures.  相似文献   

6.
Specific symmetry features of dielectric and gyrotropic properties of superlattices comprised of arbitrary crystalline layers are considered. It is shown that by changing the orientation of crystallographic axes of the high-symmetry components of the superlattice with respect to their interfaces, one can obtain structures with induced uniaxial or biaxial anisotropy. Expressions are derived that determine the orientation of optical axes in these structures. Propagation of light beams along directions of the induced binormals is analyzed. The feasibility of and conditions for lensless focusing of an optical beam in superlattices comprised of high-symmetry layers are established.  相似文献   

7.
The ionization state and bound level populations in hot, dense plasmas are studied in the average atom approximation. Bound level energies are fixed self-consistently with the complete set of population numbers, using pre-existent Hartree-Fock calculations. We present a pressure- ionization scheme that gradually merges bound electrons into the continuum. To solve the nonlinear algebraic system of equations of the model, we have derived an efficient iterative algorithm. Results are shown for aluminum and iron.  相似文献   

8.
We have investigated the use of two different image coregistration algorithms for identifying local regions of erroneously high fractional anisotropy (FA) as derived from diffusion tensor imaging (DTI) data sets in newborns. The first algorithm uses conventional affine registration of each of the diffusion-weighted images to the unweighted (b = 0) image for each slice, while the second algorithm uses second-order polynomial warping. Similarity between images was determined using the mutual information (MI) criterion, which is the preferred 'cost' criterion for coregistration of images with significantly different image intensity distributions. We have found that subtle differences exist in the FA values resulting from affine and second-order polynomial coregistration and demonstrate that nonlinear distortions introduce artifacts of spatial extent similar to real white matter structures in the newborn subcortex. We show that polynomial coregistration systematically reduces the presence of erroneous regions of high FA and that such artifacts can be identified by visual inspection of FA maps resulting from affine and polynomial coregistrations. Furthermore, we show that nonlinear distortions may be particularly pronounced when acquiring image slices of axial orientation at the height of the nasal cavity. Finally, we show that third-order polynomial MI coregistration (using the images resulting from second-order coregistration as input) has no observable effect on the resulting FA maps.  相似文献   

9.
We present analytic approximations for the field, temperature, and orientation dependences of the interface velocity in a two-dimensional kinetic Ising model in a nonzero field. The model, which has nonconserved order parameter, is useful for ferromagnets, ferroelectrics, and other systems undergoing order–disorder phase transformations driven by a bulk free-energy difference. The solid-on-solid (SOS) approximation for the microscopic surface structure is used to estimate mean spin-class populations, from which the mean interface velocity can be obtained for any specific single-spin-flip dynamic. This linear-response approximation remains accurate for higher temperatures than the single-step and polynuclear growth models, while it reduces to these in the appropriate low-temperature limits. The equilibrium SOS approximation is generalized by mean-field arguments to obtain field-dependent spin-class populations for moving interfaces, and thereby a nonlinear-response approximation for the velocity. The analytic results for the interface velocity and the spin-class populations are compared with Monte Carlo simulations. Excellent agreement is found in a wide range of field, temperature, and interface orientation.  相似文献   

10.
Myelin water fraction (MWF) images in brain tend to be spatially noisy with unknown or no apparent spatial patterns structure, so values are therefore typically averaged over large white matter (WM) volumes. We investigated the existence of an inherent spatial structure in MWF maps and explored the benefits of examining MWF values along diffusion tensor imaging (DTI)-derived white matter tracts. We compared spatial anisotropy between MWF and the more widely-used fractional anisotropy (FA) measure. Sixteen major white matter fibre bundles were extracted based on DTI data from 41 healthy subjects. MWF coefficients of variation (CoV) were computed in sub-segments along each fibre tract and compared to MWF CoVs from the surrounding “tubes” – i.e. voxels just exterior to the tract – of each segment. We further assessed the consistency of the MWF along fibre bundles across subjects and investigated the benefit of examining MWF values in sections along each fibre bundle rather than integrating over the whole tract. CoVs of MWF and FA were lower in fibre bundles compared to their enclosing tubes in all investigated tracts. Both measures possessed a spatial gradient of CoV that was smaller aligned along, compared to perpendicular to, the fibre bundles. All WM tracts showed MWF profiles along their trajectory that were consistent across subjects and were more accurate than the mean overall fibre MWF value in estimating ages of the subjects. We conclude that, although less obvious visually, the spatial MWF distribution in white matter consistently follows a distinct pattern along underlying fibre bundles across subjects. Assessing MWF in sections along white matter tracts may provide a sensitive and robust way to assess myelin across subjects.  相似文献   

11.
We have derived analytical expressions for determining the orientation of high-symmetry single crystals from line-crossings in a single rotation plot. We demonstrate the utility of the method using the strontium-87 resonance in strontium nitrate. Employing our new method, which we call orientation of single crystals using linear approximations to NMR transits (OSCULANT), in combination with fourth-order perturbation theory, we obtain a highly accurate value for the quadrupole coupling constant, and an estimate for the chemical shielding anisotropy.  相似文献   

12.
The equation of probability distribution function for mean fibre orientation in a turbulent boundary layer is derived, in which the correlation terms of the fluctuating velocity, fluctuating angular velocity with the fluctuating probability distribution function are related to the gradient of mean probability distribution function and the dispersion coefficients in order to make the equation be solvable. The finite-difference method is used to solve the equation numerically. The results show that the fibres tend to align with the streamline, which is in agreement qualitatively with the experimental result given by visualization. The fibre aspect-ratio has a significant effect on the orientation distribution of fibres, while the effect of the distance from the wall is negligible.  相似文献   

13.
Quantitative ultrasound (QUS) is now widely used for evaluating bone in vivo, because obtained ultrasonic wave properties directly reflect the visco-elasticity. Bone tissue is composed of minerals like hydroxyapatite (HAp) and a collagen matrix. HAp crystallites orientation is thus one parameter of bone elasticity. In this study, we experimentally investigated the anisotropy of ultrasonic wave velocity and the HAp crystallites orientation in the axial-radial and axial-tangential planes in detail, using cylindrical specimens obtained from the cortical bone of three bovine femurs. Longitudinal bulk wave propagation was investigated by using a conventional ultrasonic pulse system. We used the one cycle of sinusoidal pulse which was emitted from wide band transmitter. The nominal frequency of the pulse was 1 MHz. First, we investigated the anisotropy of longitudinal wave velocity, measuring the anisotropy of velocity in two planes using cylindrical specimens obtained from identical bone areas. The wave velocity changed due to the rotation angle, showing the maximum value in the direction a little off the bone axis. Moreover, X-ray pole figure measurements also indicated that there were small tilts in the HAp crystallites orientation from the bone axis. The tilt angles were similar to those of the highest velocity direction. There were good correlations between velocity and HAp crystallites orientation obtained in different directions. However, a comparatively low correlation was found in posterior bone areas, which shows the stronger effects of bone microstructure. In the radial-tangential plane, where the HAp crystallites hardly ever align, weak anisotropy of velocity was found which seemed to depend on the bone microstructure.  相似文献   

14.
Eigen spin wave frequencies and profiles of a cobalt hexagonal dot with exchange and anisotropy energies are derived. The lowest mode frequency is shown to be a linear function of edge anisotropy, so edge anisotropy controls the whole dot magnetization reversal and can be measured from spin wave resonance. The low-temperature dependence of cobalt dot magnetization is shown to be driven by edge anisotropy as well.  相似文献   

15.
王理林  王志军  林鑫  王猛  黄卫东 《中国物理 B》2012,21(6):66801-066801
The morphological stability of a planar interface with different crystallographic orientations is studied under a small positive temperature gradient using a transparent model alloy of succinonitrile.Novel experimental apparatus is constructed to provide a temperature gradient of about 0.37 K/mm.Under this small temperature gradient,the planar interface instability depends largely on the crystallographic orientation.It is shown experimentally that the effect of interfacial energy anisotropy on planar interface stability cannot be neglected even in a small temperature gradient system.Higher interfacial energy anisotropy leads the planar interface to become more unstable,which is different from the stabilizing effect of the interfacial energy on the planar interface.The experimental results are in agreement with previous theoretical calculations and phase field simulations.  相似文献   

16.
The Kinetic Monte Carlo (KMC) method based on the transition-state theory, powerful and famous for simulating atomic epitaxial growth of thin films and nanostructures, was used recently to simulate the nanoferromagnetism and magnetization dynamics of nanomagnets with giant magnetic anisotropy. We present a brief introduction to the KMC method and show how to reformulate it for nanoscale spin systems. Large enough magnetic anisotropy, observed experimentally and shown theoretically in terms of first-principle calculation, is not only essential to stabilize spin orientation but also necessary in making the transition-state barriers during spin reversals for spin KMC simulation. We show two applications of the spin KMC method to monatomic spin chains and spin-polarized-current controlled composite nanomagnets with giant magnetic anisotropy. This spin KMC method can be applied to other anisotropic nanomagnets and composite nanomagnets as long as their magnetic anisotropy energies are large enough.   相似文献   

17.
We apply thermal-lens (TL) spectrometry to measure the angular dependence of the TL effect on colquiriite single crystals. The experiments were performed with LiSrAlF(6) and LiSrGaF(6) using a two-beam mode-mismatched configuration. The results show that it is possible to minimize the TL effect by selecting the appropriate crystal orientation. Our data also show that the anisotropy of the linear thermal expansion coefficient drives the amplitude of the TL effect, including the inversion from focusing to defocusing as the crystal orientation angle tends to the c-axis direction. The results may be useful for those working to develop a high-power laser using LiSrAlF(6)(:Cr) and LiSrGaF(6)(:Cr) single crystals, allowing for optimization of the designed laser cavity.  相似文献   

18.
The effect of induced uniaxial anisotropy on the properties and parameters of the domain structure and phase transitions in yttrium-iron garnet (YIG) films is investigated. Based on the measurements and the derived formulas we determine the difference between the magnetization and the uniaxial anisotropy field for each of the films. We have also measured the parameters of the domain structures and phase transitions of the films for the magnetization parallel and perpendicular to the projections of the [111] crystallographic axes onto the plane of the film. We find that films of pure YIG films grown in (111) are characterized by the existence of some critical value of the uniaxial anisotropy field. It is found that for films in which the uniaxial anisotropy field is larger than this critical value and films in which it is less than this critical value, such parameters of the domain structures as the ratio of the width of the domains to the film thickness, the orientation of the magnetization of the domains, the orientation of the domain boundaries, and the magnitudes of the phase transition fields differ substantially. Fiz. Tverd. Tela (St. Petersburg) 41, 2034–2041 (November 1999)  相似文献   

19.
In order to describe the polarization response of an ensemble of molecules undergoing structural transformations (photoisomerization) under collisionless conditions, we have calculated the orientational correlation functions. We assume that changes in molecular structure can be considered as instantaneous on the molecular rotation scale. We have obtained general expressions for the anisotropy when the original molecule and the photoisomer are asymmetric tops. We have performed anisotropy calculations for steady-state experimental conditions and a number of limiting situations, when the characteristic times of the photoreaction are much shorter or much longer than the molecular reorientation times and when the original molecule and the photoisomer are planar tops. We have shown that detecting the polarization response allows us to estimate the characteristic times of the photoreaction and to determine the intramolecular orientation of the transition dipole moments for transitions with absorption and emission of light. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 5, pp. 582–587, September–October, 2006.  相似文献   

20.
顾文娟  潘靖  杜薇  胡经国 《物理学报》2011,60(5):57601-057601
采用铁磁共振方法,研究了铁磁/反铁磁双层膜系统中,因交换耦合以及磁晶各向异性而产生的有效各向异性场.结果表明:被测系统有无交换偏置场以及其正负号性质等均能在共振谱中得到辨析.结果还显示:沿着不同结晶方向施加外磁场,共振场的行为与磁晶各向异性以及铁磁/反铁磁交换耦合作用而诱发的单向各向异性等密切相关.将共振频率的变化看成外磁场(包括其方向和大小)的函数,研究得到了单向各向异性,立方各向异性等对共振频率的影响,并同实验结果做了很好的比较. 关键词: 铁磁/反铁磁双层膜 交换耦合 铁磁共振 单向各向异性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号