首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we investigated the surface properties of diamond-like carbon (DLC) films for biomedical applications through plasma etching treatment using oxygen (O2) and hydrogen (H2) gas. The synthesis and post-plasma etching treatment of DLC films were carried out by 13.56 MHz RF plasma enhanced chemical vapor deposition (PECVD) system. In order to characterize the surface of DLC films, they were etched to a thickness of approximately 100 nm and were compared with an as-deposited DLC film. We obtained the optimum condition through power variation, at which the etching rate by H2 and O2 was 30 and 80 nm/min, respectively. The structural and chemical properties of these thin films after the plasma etching treatment were evaluated by Raman and Fourier transform infrared (FT-IR) spectroscopy. In the case of as-deposited and H2 plasma etching-treated DLC film, the contact angle was 86.4° and 83.7°, respectively, whereas it was reduced to 35.5° in the etching-treated DLC film in O2 plasma. The surface roughness of plasma etching-treated DLC with H2 or O2 was maintained smooth at 0.1 nm. These results indicated that the surface of the etching-treated DLC film in O2 plasma was hydrophilic as well as smooth.  相似文献   

2.
Hydrogenated microcrystalline silicon films were deposited by glow discharge decomposition of SiH4 diluted in mixed gas of Ar and H2. By investigating the dependence of the film crystallinity on the flow rates of Ar and H2, we showed that the addition of Ar in diluted gas markedly improves the crystallinity due to an enhanced dissociation of SiH4. The infrared-absorption spectrum reveals that the fraction of SiH bonding increases with increasing the rate ratio of H2/(H2 + Ar). The surface roughness of the films increases with increasing the flow rate ratio of H2/(H2 + Ar), which is attributed to the decrease of massive bombardment of Ar ions in the plasma. Refractive index and absorption coefficient of the films were obtained by simulating the optical transmission spectra using a modified envelope method. Electrical measurements of the films show that the dark conductivity increases and the activation energy decreases with the ratio of H2/(H2 + Ar). A reasonable explanation is presented for the dependence of the microstructure and optoelectronic properties on the flow rate ratio of H2/(H2 + Ar).  相似文献   

3.
NaLaP2O7 and NaGdP2O7 powder samples are prepared by solid-state reactions at 750 and 600 °C, respectively, and the VUV-excited luminescence properties of Ln3+ (Ln=Ce, Pr, Tb, Tm, Eu) in both diphosphates are studied. Ln3+ ions in both hosts show analogous luminescence. For Ce3+-doped samples, the five Ce3+ 5d levels can be clearly identified. As for Pr3+ and Tb3+-doped samples, strong 4f-5d absorption band around 172 nm is observed, which matches well with Xe-He excimer in plasma display panel (PDP) devices. As a result, Pr3+ can be utilized as sensitizer to absorb 172 nm VUV photon and transfer energy to appropriate activators, and Tb3+-doped NaREP2O7(RE=La, Gd) are potential 172 nm excited green PDP phosphors. For Tm3+ and Eu3+-doped samples, the Tm3+-O2− charge transfer band (CTB) is observed to be at 177 nm, but the CTB of Eu3+ is observed at abnormally low energy position, which might originate from multi-position of Eu3+ ions. The similarity in luminescence properties of Ln3+ in both hosts indicates certain structural resemblance of coordination environment of Ln3+ in the two sodium rare earth diphosphates.  相似文献   

4.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

5.
Using first-principles calculations we investigate the influence of interface modification and layer thicknesses on the optical properties of Si/SiO2 superlattices. Four interface models with different dangling-bond passivation are considered. The results demonstrate confinement effects not only for the fundamental band gaps but also for the optical properties. While for a large Si layer thickness of the Si/SiO2 superlattices the interface dependence is small, the calculations show a significant structure dependence for thin Si layers. © 2007 Elsevier Science. All rights reserved.  相似文献   

6.
Anatase phase TiO2 films have been grown on fused silica substrate by pulsed laser deposition technique at substrate temperature of 750 °C under the oxygen pressure of 5 Pa. From the transmission spectra, the optical band gap and linear refractive index of the TiO2 films were determined. The third-order optical nonlinearities of the films were measured by Z-scan method using a femtosecond laser (50 fs) at the wavelength of 800 nm. The real and imaginary parts of third-order nonlinear susceptibility χ(3) were determined to be −7.1 × 10−11esu and −4.42 × 10−12esu, respectively. The figure of merit, T, defined by T=βλ/n2, was calculated to be 0.8, which meets the requirement of all-optical switching devices. The results show that the anatase TiO2 films have great potential applications for nonlinear optical devices.  相似文献   

7.
In this paper, we present the photoluminescence properties of Pr3+-, Sm3+- and Dy3+-doped germanate glasses and glass ceramics. From the X-ray diffraction measurement, the host glass structure was determined. These glasses have shown strong absorption bands in the near-infrared (NIR) region. Compared to Pr3+-, Sm3+- and Dy3+-doped glasses, their respective glass ceramics have shown stronger emissions due to the Ba2TiGe2O8 crystalline phase. For Pr3+-doped glass and glass ceramic, emission bands centered at 530 nm (3P03H5), 614 nm (3P03H6), 647 nm (3P03F2) and 686 nm (3P03F3) have been observed with 485 nm (3H43P0) excitation wavelength. Of them, 647 nm (3P03F2) has shown bright red emission. Emission bands of 4G5/26H5/2 (565 nm), 4G5/26H7/2 (602 nm) and 4G5/26H9/2 (648 nm) for the Sm3+:glass and glass ceramic, with excitation at 6H5/24F7/2 (405 nm) have been recorded. Of them, 4G5/26H7/2 (602 nm) has shown a bright orange emission. With regard to the Dy3+:glass and glass ceramic, a bright fluorescent yellow emission at 577 nm (4F9/26H13/2) has been observed, apart from 4F9/26H11/2 (667 nm) emission transition with an excitation at 454 nm (6H15/24I15/2) wavelength. The stimulated emission cross-sections of all the emission bands of Pr3+, Sm3+ and Dy3+:glasses and glass ceramics have been computed based on their measured full-width at half-maxima (FWHM, Δλ) and lifetimes (τm).  相似文献   

8.
Nanocrystalline TiO2 structures are formed by irradiation of 100 MeV Au8+ ion beam on amorphous thin films of TiO2. Surface morphology of the nanocrystals is studied by Atomic Force Microscopy (AFM). Amorphous to nanocrystalline phase transformation is identified by Glancing Angle X-ray Diffraction (GAXRD) and Raman spectroscopic studies. Optical characterization is carried out by UV-VIS spectroscopy technique. Blue shift observed in absorption band edge indicates the formation of nanophase TiO2 after irradiation. The impinging swift heavy ion (100 MeV Au8+) induces nucleation of nanoparticles along the ion trajectory through inelastic collisions of the projectile with electrons of the material. It is observed that the shape and size of nanoparticles formed is dependant on the irradiation fluence.  相似文献   

9.
We report an infrared reflection spectroscopy study of La1/2Ca1/2MnO3 over a broad frequency range and temperature interval which covers the transitions from the high temperature paramagnetic to ferromagnetic and, upon further cooling, to antiferromagnetic phase. The structural phase transition, accompanied by a ferromagnetic ordering at TC=234 K, leads to enrichment of the phonon spectrum. A charge ordered antiferromagnetic insulating ground state develops below the Néel transition temperature TN=163 K. This is evidenced by the formation of charge density waves and opening of a gap with the magnitude of 2Δ0=(320±15) cm−1 in the excitation spectrum. Several of the infrared active phonons are found to exhibit anomalous frequency softening. The experimental data suggest coexistence of ferromagnetic and antiferromangetic phases at low temperatures.  相似文献   

10.
Gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates using RF magnetron co-sputtering, followed by H2 ambient annealing at 623 K to explore a possibility of steady and low-cost process for fabricating transparent electrodes. While it was observed that the ZnO:Ga thin films were densely packed c-axis oriented self-textured structures, in the as-deposited state, the films contained Ga2O3 and ZnGa2O4 which had adverse effect on the electrical properties. On the other hand, post-annealing in H2 ambient improved the electrical properties significantly via reduction of Ga2O3 and ZnGa2O4 to release elemental Ga which subsequently acted as substitutional dopant increasing the carrier concentration by two orders of magnitude. Transmittance of the ZnO:Ga thin films were all over 90% that of glass while the optical band gap varied in accordance with the carrier concentrations due to changes in Fermi level. Experimental observation in this study suggests that transparent conductive oxide (TCO) films based on Ga doped ZnO with good electrical and optical properties can be realized via simple low-cost process.  相似文献   

11.
ZnO-CdO-TeO2 was employed as a host of Tb3+ and Yb3+ ions. The matrix doped with Tb3+ presents a crystalline/amorphous structure, while the same matrix shows an amorphous structure when it is doped with Yb3+. Optical absorption spectra, measured by using photoacoustic (PA) spectroscopy, allowed to determine the band gap, which is localized in the range 3.47-3.60 eV. Both kinds of ions Tb3+ and Yb3+ in the ZnO-CdO-TeO2 matrix show emissions that are characteristic of such ions. For Tb3+ the signals were allocated in 548, 586, 622 nm, respectively, while for Yb3+ only one signal was registered at 1000 nm.  相似文献   

12.
SiO2 films have been prepared on sapphire by radio frequency magnetron reactive sputtering in order to increase the optical and mechanical properties of infrared windows and domes of sapphire at elevated temperatures. Infrared transmission and flexural strength of uncoated and coated sapphires have been investigated at different temperatures. SiO2 films were shown to have apparent antireflective effect on sapphire substrate at room temperature. With increasing temperature, the coated sapphires have larger average transmission than the uncoated ones. The temperature was proven to only weakly affect the absorption coefficient and antireflection capability of the deposited films. It is also indicated that the flexural strengths of the c-axis sapphire samples coated with SiO2 films are increased by 1.2 and 1.5 times than those of uncoated at 600 and 800 °C, respectively.  相似文献   

13.
The structural, optical and elastic properties of cubic HfO2 were studied using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The ground-state properties such as lattice parameter and bulk modulus were calculated and these results are in favorable agreement with the previous work. The complex dielectric function, refractive index, extinction coefficient, complex conductivity function, energy-loss spectrum, absorption coefficient and optical reflectivity are calculated and the peak position distributions of imaginary parts of the complex dielectric function have been explained. The calculated elastic properties are consistent with other calculated results.  相似文献   

14.
The magnetization process of Co/Si/Co/GaAs was studied as a function of Si-spacer layer thickness. Coercivity of Co/Si decreased with increasing Si-spacer layer thickness.The Hysteresis loop changed from two phases to a single phase with decreasing temperature and Si-spacer layer thickness. Magnetoresistance (MR) ratio in current-perpendicular-to-plane (CPP) configuration increased with decreasing Si-spacer layer thickness.  相似文献   

15.
The influence of grain size on the phase transitions of ferroelectric KNbO3 was studied by micro Raman spectroscopy. It was found that the three transitions observed are not sharp for small particles (∼50 μm), indicating that they do not behave like bulk particles. The transition temperatures depend on the size and all particles show hysteresis. From these experiments we have obtained some evidence that in small particles monodomains of the rhombohedral and orthorhombic phases coexist in a range of temperatures.  相似文献   

16.
K. Ma 《Applied Surface Science》2005,252(5):1679-1684
The effect of Ni interlayer on stress level of cobalt silicides was investigated. The X-ray diffraction patterns (XRD) show that low temperature formation of Co1−xNixSi2 solid solution was obtained while Ni interlayer was present in Co/Si system, which was confirmed by Auger electron spectrum (AES) and sheet resistance measurement. XRD was also used to measure the internal stress in CoSi2 films by a 2θψ − sin2ψ method. The result shows that the tensile stress in CoSi2 films evidently decreased in Co/Ni/Si(1 0 0) system. The reduction of lattice mismatch, due to the presence of Ni in CoxNi1−xSi2 solid solution, is proposed to explain this phenomenon.  相似文献   

17.
Transparent Li-doped Gd2O3:Eu3+ thin-film phosphors were prepared by a modified sol-gel method. The effect of the Li+ ions on luminescent properties of the thin film was investigated. The results indicated that incorporation of Li+ ions into Gd2O3 lattice could result in a remarkable increase on photoluminescence or X-ray excited luminescence, and the strongest emission was observed from Gd1.84Li0.08Eu0.08O3−δ film, in which the intensity was increased by a factor of 1.9 or 2.3 in comparison with that of Gd1.92Eu0.08O3 film. And it could be achieved the highest intensity for sintering the Gd1.84Li0.08Eu0.08O3−δ film at 700 °C. Such a temperature is much lower than the typical solid-state reaction temperature for its powder phosphors. This kind of transparent thin-film phosphors may promise for application to micro X-ray imaging system.  相似文献   

18.
Transparent GdTaO4:Eu3+ thick films were prepared from the inorganic salt and 2-methoxyethanol solution containing polyvinylpyrrolidone (PVP) via sol-gel technique. The critical thickness of the film, i.e. the maximum thickness achievable without crack formation via non-repetitive deposition, was 0.8 μm. The effect of PVP on the morphology, crystallization behavior and optical property of the GdTaO4:Eu3+ thick film was investigated. The results indicated that PVP could play an important role in the formation of transparent GdTaO4:Eu3+ thick films, suppressing the stress evolution, adjusting the sol viscosity, ameliorating the crystallinity, and strengthening the covalency of Eu-O bonds. The GdTaO4:Eu3+ thick films prepared with PVP exhibited a superior photoluminescence and X-ray exited luminescence, which implies that it will have promising applications in high-spatial-resolution X-ray imaging and flat panel display devices.  相似文献   

19.
Vibrational and dielectric properties of YAlO3 are investigated within the framework of density functional perturbation theory. The calculated zone center phonon frequencies and dielectric constants are in good agreement with available experimental data. Based on the theoretical values of the dielectric constants and the highest longitudinal IR phonon energy and using the phenomenological model of Lempicki and Wojtowicz, we investigate the scintillation properties of the YAlO3.  相似文献   

20.
Stoichiometric BaxSr1−xTiO3 ceramics (x=0.7, 0.8, and 0.9) have been prepared by solid-state reaction method. It has been observed in our experiments that the photoluminescence (PL) spectra in such samples at room temperature were centered around 800 nm; the results have been found to differ from observations in current literature. An explanation of this phenomenon was given, and the origin of such photoluminescence is ascribed to certain defects existing in these compounds, such as oxygen vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号