首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Results of electrical resistance measurements on MgB2 at ambient temperature up to 25 GPa are presented. An abrupt reduction of nearly 30% in resistance around 18 GPa is observed. Band structure calculations in the presence of a frozen-in distortion of the E2g phonon mode reveal that one of the closed Fermi sheets corresponding to the σ-band opens along the Γ-A direction at this pressure. It is suggested that the anomaly observed in the resistance is due to this phonon mediated electronic topological transition (ETT).  相似文献   

2.
The case for high-temperature superconductivity originating in SrO or BaO planes, or in interstitial regions, is made, including (i) four successfully predicted superconductors; (ii) evidence that the superconductivity of the major cuprates is associated with holes in these layers; (iii) data showing that Pr on one side of a cuprate-plane kills the superconductivity, but Pr on the other side does not; and (iv) evidence that doped Sr2YRuO6 has an onset of superconductivity at ∼45 K despite having no cuprate-planes.  相似文献   

3.
4.
We study the ferromagnetic superconductor of UGe2 applying our previous model [Phys. Rev. B 61 (2000), 4289] for the high transition temperature superconductivity (HTSC). The Coulomb interaction for triplet electron pairs is reduced by a difference of the exchange interaction. In the case of UGe2 including other heavy fermion superconductors, coexistence of triplet superconductivity and ferromagnetism is possible in the case of our scheme. We also investigate the pressure-dependence of Curie temperature, Tc and superconducting temperature, Tsc.  相似文献   

5.
The hyperbolic metric of the dispersion law (the effective mass tensor components of carriers are opposite in sign) in the vicinity of the Fermi contour in high-T c superconducting cuprates in the case of repulsive interaction gives rise to a superconducting state characterized by the condensate of pairs with a large total momentum (hyperbolic pairing). The gain in the energy of the superconducting state over the normal state is due to the fact that a change in the kinetic energy of pairs (because of the negative light component of the effective mass) dominates over the change in the potential energy (corresponding to energy loss). The shift of the chemical potential upon the transition to the superconducting phase is substantial in this case. With increasing repulsive interaction, the superconducting gap δK increases and the resulting gain in energy changes to an energy loss at a certain critical value of the repulsive potential. The low temperature T c of the superconducting transition and the large value of δ K in this region of potential values are the reasons for the high value of the 2δK/T c ratio and for the developed quantum fluctuations that are observed in underdoped cuprate superconductors.  相似文献   

6.
We study the electronic Raman scattering in the cuprates to distinguish the two possible scenarios of the pseudogap normal state. In one scenario, the pseudogap is assumed to be caused by phase fluctuations of the preformed Cooper pairs. We find that pair-breaking peaks appear in both the B1g and B2g Raman channels, and they axe smeared and tend to shift to the same energy with the increasing strength of phase fluctuations. Thus both channels reflect the same pairing energy scale, irrespectively of the doping level. In another scenario, the pseudogap is assumed to be caused by a hidden order that competes with the superconducting order. As an example, we assume that the hidden order is the d-density-wave (DDW) order. We find analytically and numerically that in the DDW normal state there is no Raman peak in the B2g channel in a tight-binding model up to the second nearest-neighbor hopping, while the Raman peak in the Big channel reflects the energy gap caused by the DDW order. This behavior is in agreement with experiments in the pseudogap normal state. To gain further insights, we also calculate the Raman spectra in the DDW+SC state. We study the doping and temperature dependence of the peak energy in both channels and find a two-gap behavior, which is in agreement with recent Raman experiments. Therefore, our results shed light on the hidden order scenario for the pseudogap.  相似文献   

7.
We study the effect of dimerization of TMTSF molecules and the effect of magnetic field (Zeeman splitting) on the phase competition in quasi one-dimensional organic superconductors (TMTSF)2X by applying the random phase approximation method. As for the dimerization effect, we conclude that due to the decrease of the dimerization, which corresponds to applying the pressure and cooling, spin and charge density wave states are suppressed and give way to a superconducting state. As for the magnetic field effect, we find generally that spin-triplet pairing mediated by a coexistence of 2kF spin and 2kF charge fluctuations can be strongly enhanced by applying magnetic field rather than triplet pairing due to a ferromagnetic spin fluctuations. Applying the above idea to (TMTSF)2X compounds, a magnetic field induced singlet-triplet transition is consistent with above mechanism in (TMTSF)2ClO4.  相似文献   

8.
We have studied the superconducting properties of MgB2 from first-principles under isotropic, uniaxial, and biaxial compressions. We find that the in-plane boron phonons near the zone-center are very anharmonic and strongly coupled to the planar B σ bands near the Fermi level. This mode is found to be the key to quantitatively explain the observed high Tc, the total isotope effect and the pressure dependence of Tc. We propose that a stringent test on the hole and phonon based theories of the superconductivity in MgB2 would be a measurement of the biaxial ab-compression dependence of Tc.  相似文献   

9.
FAN Wei 《中国物理快报》2008,25(6):2217-2220
Using the electron--phonon mechanism, we explain the spatial anti-correlation between the energy-gap and the energy of phonon mode for cuprate superconductor found in tunnelling spectrum by STM measurements of Bi2212, which is the direct effect of an important relationship (or constraint) I=const, where I is superconducting parameters. By relaxing above constraint, we study the correlation of energy gap and phonon energywhen I has a distribution. We calculate a map of transition temperature in space constructing by phonon energy and the parameter of electron--phonon interaction, which is helpful for understanding of the relation.  相似文献   

10.
11.
According to recent experimental findings the leading pairing resides in the nodal (FS arcs) momentum region of hole doped cuprates. The pseudogap is an antinodal feature. A corresponding multiband model of the electronic background evolving with doping serves the usually presented phase diagram. The pairing is due by the pair-transfer between overlapping nodal defect (polaron) band and the itinerant band. A bare gap vanishing with extended doping between the antinodal defect subband and the itinerant band top leads to the formation of the pseudogap as a perturbative band-structure effect. The calculated behaviour of two superconducting gaps and of the pseudogap on the whole doping scale is in qualitative agreement with the observations. Arguments to include cuprates into the class of multiband-multigap superconductors are given by these results.  相似文献   

12.
In a first step we use an ab initio rigid-ion model (RIM) to calculate the lattice parameters and the phonon dispersion of the infinite-layer compounds CaCuO2, SrCuO2, and BaCuO2. We find an increase of both the planar and the axial lattice constant when going from CaCuO2 through SrCuO2 to BaCuO2. The rate of increase of the planar lattice constant with respect to the alkaline-earth ionic radius is calculated to be smaller for the replacement of Sr by Ba than for the replacement of Ca by Sr. Both results are in accordance with experimental studies. The phonon dispersion in the RIM exhibits several unstable branches mainly related to axial displacements of the oxygens, indicating the tendency of the crystal to reconstruct in a lower-symmetry structure. The structural stability increases, however, towards BaCuO2; simultaneously, the maximum phonon frequency decreases. AnA 2u zone-center mode with very large LO-TO-splitting exists in all three compounds (ferroelectric mode). In a second step charge fluctuations (CF) are taken into account at the copper- and oxygen ions, using SrCuO2 as an example. Due to the vanishing of the ferroelectric split a branch with very steep dispersion forms in the [001] direction in the metallic phase whereas the zone-centerA 2u modes are unchanged in the insulating phase because of the two-dimensional (2D) electronic structure assumed. Characteristic nonlocal electron-phonon-interaction effects are associated with theZ-point Sr-axial-breathing mode: CF of uniform sign within the CuO planes but alternating sign in consecutive planes do occur in the metalic phase. This interplane charge transfer is, on the other hand, suppressed in the insulating phase due to the 2D electronic structure assumed. Instead, large induced site-potential changes emerge in this case.  相似文献   

13.
The doping dependence of the Raman spectra of high quality La2−xSrxCu16,18O4 polycrystalline compounds has been investigated at low temperatures. It is shown that symmetry forbidden bands peaked at ∼150 cm−1, ∼280 cm−1, and ∼370 cm−1 are activated in the (xx/yy) polarization Raman spectra due to the local breaking of the inversion symmetry mainly at low temperatures and for doping concentrations for which the compound is superconducting. The apparent A1-character of the activated modes in the symmetry reduced phase indicates a reduction from the D2h to C2v or D2 crystal symmetries, which associates the observed modes to specific IR-active phonons with eigenvectors mainly along the c-axis. The temperature and doping dependence of this inversion symmetry breaking and the superconducting transition temperature are very similar, though the symmetry reduction occurs at significantly higher temperatures.  相似文献   

14.
Within the framework of the dielectric-continuum model and Loudon's uniaxial crystal model, the equation of motion for p-polarization field in arbitrary wurtzite multilayer heterostructures are solved for the quasi-confined phonon (QC) modes. The polarization eigenvector, the dispersion relation, and the electron-QC interaction Fröhlich-like Hamiltonian are derived by using the transfer-matrix method. The dispersion relations and the electron-QC coupling strength are investigated for a wurtzite GaN/AlN single QW. The results show that there are infinite branches of dispersion curve with definite symmetry with respect to the center of the QW structure. The confinement of the quasi-confined phonons in the QW leads to a quantization of qz,j characterized by an integer m that defines the order of corresponding quasi-confined modes. The QC modes are more dispersive for decreasing m. The QC modes display an interface behavior in the barrier and a confined behavior in the well. The symmetric modes have more contribution to electron-QC interaction than the antisymmetric modes. The strains have more effect on symmetry modes, and can be ignored for symmetry modes.  相似文献   

15.
A simple model to describe the energetic phase diagram of electron-doped cuprate superconductor is developed. Interband pairing operates between the UHB and the defect states created by doping and supplied by both extincting HB-s. Two defect subbands correspond to the (π,0) and (π/2,π/2) momentum regions. Extended doping quenches the bare normal state gaps (pseudogaps). Maximal transition temperature corresponds to overlapping bands ensemble intersected by the chemical potential. Illustrative results for Tc, pseudo- and superconducting gaps are calculated on the whole doping scale. Major characteristic features on the phase diagram are reproduced. Anticipated manifestation of gaps doping dynamics is discussed.  相似文献   

16.
A first analytic calculation has been done in Nernst constant on the basis of the hypothesis that the normal state of the underdoped cuprate is at the two-channel Kondo fixed point of the crystal. Its temperature variation is found to obey a universal scaling relation, which can be checked experimentally. It has the maximum in the pseudogap regime, which has been already found experimentally. We present argument and evidence that in the doped and moderately disordered cuprate the two-channel fixed point is stable.  相似文献   

17.
We investigate the magnetic field dependence on Tc in the high transition temperature superconductors. It is shown that phonon-enhanced spin fluctuations drive this superconductivity once more suggested by us [Phys. Rev. B 61 (2001) 4289]. We know magnetic field dependence on our transition temperature is in good correspondence with experimental data. It is elucidated that the external field is closely related to the local internal field in order to influence spin fluctuations.  相似文献   

18.
Excitonic polaron and phonon assisted photoluminescence of ZnO nanowires   总被引:1,自引:0,他引:1  
The coupling strength of the radiative transition of hexagonal ZnO nanowires to the longitudinal optic (LO) phonon polarization field is deduced from temperature dependent photoluminescence spectra. An excitonic polaron formation is discussed to explain why the interaction of free excitons with LO phonons in ZnO nanowires is much stronger than that of bound excitons with LO phonons. The strong exciton-phonon coupling in ZnO nanowires affects not only the Haung-Ray S factor but also the FXA-1LO phonon energy spacing, which can be explained by the excitonic polaron formation.  相似文献   

19.
We aim to give a pedagogical introduction to those elementary aspects of superconductivity which are not treated in the classic textbooks. In particular, we emphasize that global U (1) phase rotation symmetry, and not gauge symmetry, is spontaneously violated, and show that the BCS wave function is, contrary to claims in the literature, fully gauge invariant. We discuss the nature of the order parameter, the physical origin of the many degenerate states, and the relation between formulations of superconductivity with fixed particle numbers vs. well-defined phases. We motivate and to some extend derive the effective field theory at low temperatures, explore symmetries and conservation laws, and justify the classical nature of the theory. Most importantly, we show that the entire phenomenology of superconductivity essentially follows from the single assumption of a charged order parameter field. This phenomenology includes Anderson’s characteristic equations of superfluidity, electric and magnetic screening, the Bernoulli Hall effect, the balance of the Lorentz force, as well as the quantum effects, in which Planck’s constant manifests itself through the compactness of the U (1) phase field. The latter effects include flux quantization, phase slippage, and the Josephson effect.  相似文献   

20.
We investigate a kind of spin-Peierls transition (SP) in high Tc superconductivity. It is found the antiferromagnetic exchange integral of SP corresponds to the magnetic resonance peak. The kind of spin-Peierls transition applied to cuprate superconductors is that without dimerization of lattice ions and with dimerization of localized hole hCu attached to the ion. Absence of the magnetic resonance peak in La-Sr-Cu-O results from the dimerized state of localized hole, hCu below Tc into tetramerized phase above Tc in SP transition without dimerization of copper-ion. The checkerboard patterns with four unit cell period originate from the SP of electronic part without ion-dimerization and from charge occupation probability of oxygen-atom around Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号