首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work reports an experimental investigation of the ferroelectric character of magnetic phases of the orthorhombic Eu1−xY xMnO3 system at low temperatures. The temperature dependence of the polarization curves clearly reveals the existence of a re-entrant improper ferroelectric phase for x=0.2, 0.3 and 0.5. A ferroelectric phase is also stable for x=0.4, and we have no experimental evidence for its vanishing down to 7 K. From these and early results obtained using other experimental techniques, the corresponding (x,T) phase diagram was traced, yielding significant differences with regard to the ones previously reported.  相似文献   

2.
In this paper, effects of lead doping on the lattice response and phase transitions of Sr1−xPbxBi2Nb2O9 (x=0.0-0.5 in steps of 0.1) ferroelectric ceramics are reported. It is observed that structure attains more tetragonality with doping of lead up to 40%. Increased orthorhombic distortion is observed for undoped SBN and 50 at.% lead substituted SBN. Phase transitions for all samples were studied using Curie temperature measurements and are explained in terms of lattice response of these ceramics. Sample with x=0.5 shows decreased tetragonal strain and Curie temperature. Relationship of polarization with lattice response is discussed.  相似文献   

3.
J.H. Qiu  Q. Jiang 《Physics letters. A》2008,372(48):7191-7195
A thermodynamic analysis is employed to investigate the intrinsic electrocaloric effect of Pb(Zr1 − xTix)O3 solid solution system under the different electric field. Theoretical analysis indicates that Pb(Zr1 − xTix)O3 system has the giant electrocaloric coefficient and the large adiabatic temperature change near its ferroelectric Curie temperature. The applied electric field decreases not only the electrocaloric coefficient but also its temperature dependence. Furthermore, it increases the adiabatic temperature change as well as its dependence of temperature. The temperature corresponding to the maximum of electrocaloric coefficient and adiabatic temperature change increases with the enhancement of electric field because of its first-order phase transition between ferroelectric phase and paraelectric phase.  相似文献   

4.
(Bi1?xLax)FeO3 solid solution, a material exhibiting simultaneously electric and magnetic long range dipole order, is studied by the method of differential thermal analysis. The results confirm the data on ferroelectric phase transitions obtained from electric permittivity and dilatometric measurements above 500°C. The endothermal effect observed about 820°C is related to the ferroelectric phase transition of BiFeO3.  相似文献   

5.
Na1−xLixNbO3 ceramics with composition 0.05≤x≤0.30 were prepared by solid-state reaction method and sintered in the temperature range 1100-1150 °C. These ceramics were characterised by X-ray diffraction as well as dielectric permittivity measurements and Raman spectroscopy. Dielectric properties of ceramics belonging to the whole composition domain were investigated in a broad range of temperatures from 300 to 750 K and frequencies from 0.1 to 200 kHz. The Rietveld refinement powder X-ray diffraction analysis showed that these ceramics have a single phase of perovskite structure with orthorhombic symmetry for x≤0.15 and two phases coexistence of rhombohedral and orthorhombic above x=0.20. The evolution of the permittivity as a function of temperature and frequency showed that these ceramics Na1−xLixNbO3 with composition 0.05≤x≤0.15 present the classical ferroelectric character and the phase transition temperature TC increases as x content increases. The polarisation state was checked by pyroelectric and piezoelectric measurements. For x=0.05, the piezoelectric coefficient d31 is of 2pC/N. The evolution of the Raman spectra was studied as a function of temperatures and compositions. The results of the Raman spectroscopy study confirm our dielectric measurements, and they indicate clearly the transition from the polar ferroelectric phase to the non-polar paraelectric one.  相似文献   

6.
In this work, X-ray diffraction data taken on Bi1−xLaxFeO3 solid solutions are used to verify the following structural phase transitions: “polar rhombohedral-antipolar orthorhombic” at x≈0.16 and “commensurate-incommensurate” within the orthorhombic phase at x≈0.18. In contrast, in the Bi1−xPrxFeO3 series, the polar rhombohedral phase transforms into an antipolar orthorhombic one at x≥0.13. The polar rhombohedral phase near the morphotropic phase boundary exhibits an isothermal transformation into an antipolar orthorhombic phase, though the transformation occurs much faster in the case of La-doped compounds. The incommensurate structural phase was not detected in Bi1−xPrxFeO3 solid solutions. The ternary structural phase diagram is constructed for (Bi,La,Pr)FeO3 systems. In addition, the polar rhombohedral phase exhibits a magnetic field-induced transition from the modulated antiferromagnetic state into a homogeneous weak ferromagnetic state whereas the antipolar phase is a weak ferromagnetic state in the absence of an external field.  相似文献   

7.
The magnetic phase transitions and the magnetocaloric effects in MnNi1−xCoxGe (x=0.38 and 0.40) alloys were investigated. The substitution of Co for Ni in the MnNiGe antiferromagnet results in the metamagnetic transitions from antiferromagnetic to ferromagnetic state, which associates with very small thermal and magnetic hystereses. Positive and negative values of magnetic entropy changes are exhibited around the metamagnetic transition temperature and Curie temperature, respectively. The relatively large refrigerant capacity in low magnetic field along with the good reversibility suggest that MnNi1−xCoxGe (x=0.38 and 0.40) alloys are potential candidates for magnetic refrigeration.  相似文献   

8.
The electrical properties and phase transition behavior of (Pb0.87La0.02Ba0.1)(Zr0.6Sn0.4−xTix)O3 solid solutions (PLBZST, 0.04≤x0.2) were investigated by the X-ray diffraction, permittivity, pyroelectric current, and P-E electric hysterisis loops. As the composition x increased from 0.04 to 0.2, the antiferroelectric ceramics (x≤0.07, AFE) with tetragonal phase changed to the ferroelectric relaxors (RFE, 0.09≤x). AFE ceramics showed a peculiar diffuse phase transition and dielectric relaxation at the low temperature (down to −100 °C) due to a frustration between AFE and FE state. With an increase in composition x, electrically field-induced AFE-FE switching field (EAFE-FE) and AFE-paraelectric (PE) phase transition temperature (Tc) are depressed in the temperature (T)-Ti composition (x) phase diagram, a FE-AFE-PE triple phase point (Ttr) with the lowest transition temperature occurred at x=0.09. The pyroelectric currents under an application of various external electric field (E) were measured to identify a T-E phase diagram of the PLBZST compound.  相似文献   

9.
(Ga1−xMnx)N thin films grown on GaN buffer layers by using molecular beam epitaxy were investigated with the goal of producing diluted magnetic semiconductors (DMSs) with band-edge exciton transitions for applications in optomagnetic devices. The magnetization curve as a function of the magnetic field at 5 K indicated that ferromagnetism existed in the (Ga1−xMnx)N thin films, and the magnetization curve as a function of the temperature showed that the ferromagnetic transition temperature of the (Ga1−xMnx)N thin film was above room temperature. Photoluminescence and photoluminescence excitation spectra showed that band-edge exciton transitions in (Ga1−xMnx)N thin films appeared. These results indicate that the (Ga1−xMnx)N DMSs with a magnetic single phase hold promise for potential applications in spin optoelectronic devices in the blue region of the spectrum.  相似文献   

10.
The effect of Si/Ge ratio on resistivity and thermopower behavior has been investigated in the magnetocaloric ferromagnetic Gd5SixGe4−x compounds with x=1.7-2.3. Microstructural studies reveal the presence of Gd5(Si,Ge)4-matrix phase (5:4-type) along with traces of secondary phases (5:5 or 5:3-type). The x=1.7 and 2.0 samples display the presence of a first order structural transition from orthorhombic to monoclinic phase followed by a magnetic transition of the monoclinic phase. The alloys with x=2.2 and 2.3 display only magnetic transitions of the orthorhombic phase. A low temperature feature apparent in the AC susceptibility and resistivity data below 100 K reflects an antiferromagnetic transition of secondary phase(s) present in these compounds. The resistivity behavior study correlates with microstructural studies. A large change in thermopower of −8 μV/K was obtained at the magneto-structural transition for the x=2 compound.  相似文献   

11.
Capacitance measurements at various fixed d.c. biases as a function of temperature are presented for junction diodes fabricated from alloys of Pb1?xGex with x=0.03, x=0.45 and x=0.06. Strong capacitance maxima at the temperatures associated with a cubic-rhombohedral phase transition are observed. These peaks are the first reported direct evidence for the ferroelectric nature of the crystalline phase transition in the PbTe based alloys.  相似文献   

12.
Ba[(Fe0.5Nb0.5)1−xTix]O3 (x=0.2,0.4,0.6,0.8,0.85,0.9 and 0.95) solid solutions were synthesized by a standard solid-state reaction technique. X-ray diffraction at room temperature and dielectric characteristics over a broad temperature and frequency range were evaluated systematically. The structure of Ba[(Fe0.5Nb0.5)1−xTix]O3 solid solutions changed from cubic to tetragonal with increasing x. A Debye-like dielectric relaxation following the Arrhenius law similar to that in Ba(Fe0.5Nb0.5)O3 was observed at lower temperature in the composition range 0.2≤x≤0.8, while the relaxor ferroelectric, diffused ferroelectric and normal ferroelectric behavior were observed for x=0.85,0.9 and 0.95, respectively. The process of the evolution of relaxor-like dielectric to ferroelectric suggested the changing from dilute polar micro-domains to polar micro-domains, polar micro/macro-domains and then polar macro-domains in the present ceramics.  相似文献   

13.
We report on the enhanced electromechanical, magnetic and magnetoelectric properties of Bi1−xCaxFe1−xTixO3 solid solutions. The crystal structure of the x≈0.25 compounds are close to the rhombohedral-orthorhombic phase boundary, and the solid solutions are characterized by increased electromechanical properties due to the polarization extension near the polar-nonpolar border. The homogenous weakly ferromagnetic state is established at x>0.15 doping. The chemical doping shifts the magnetic transition close to room temperature, thus enlarging the magnetic susceptibility of the compounds. The solid solutions at the morphotropic phase boundary exhibit a nearly twofold increase in piezoelectric response, whereas the magnetoelectric coupling shows five times enhancement in comparison with the parent bismuth ferrite.  相似文献   

14.
Melt spun Ni50−xMn37+xIn13 (2≤x≤5) ribbons were investigated for the structure, microstructure, magneto-structural transitions and inverse magnetocaloric effect (IMCE) associated with the first-order martensitic phase transition. The influence of excess Mn in Ni site (or Ni/Mn content) on the martensite transition and the associated magnetic and magnetocaloric properties are discussed. It was found that with the increase in Mn content, the martensitic transition shifted from 325 to 240 K as x is varied from 2 to 4, and the austenite phase was stabilized at room temperature. The x=5 ribbon did not show the martensitic transition. For the x=3 ribbon, the structural and magnetic transitions are close together unlike in the x=4 ribbon in which they are far (∼60 K) apart. The zero field cooled and field cooled curves support the presence of exchange bias blocking temperature due to antiferromagnetic interactions in the ribbons. A large change in the magnetization between the martensite and austenite phases was observed for a small variation in the Ni/Mn content, which resulted in large IMCE. A large positive magnetic entropy change (ΔSM) of 32 J/kg K at room temperature (∼ 300 K) for a field change of 5 T with a net refrigeration capacity of 64 J/kg was obtained in the Ni47Mn40In13 ribbon.  相似文献   

15.
Pure and Nb-doped Pb(Zr1−xTix)O3 (x = 0.47, 0.48, 0.50) ceramics were prepared by conventional solid-state reaction technique. Dielectric anomalies are observed in both kinds of samples near room temperature. The anomalies could be depressed by donor doping and prefer to be significant in ceramics with tetragonal crystallographic phase. Phase transition mechanism and domain wall pinning effect are proposed to explain this anomaly, and the former is considered as the dominated reason. Further results of the pyroelectric measurements confirm the existence of the ferroelectric–ferroelectric phase transition.  相似文献   

16.
We have investigated the magnetic phase diagram of polycrystalline and single-crystal La1−xSrxMnO3 near 0.46≤x≤0.50. It turns out that for x<0.48, the polycrystalline material is ferromagnetic (FM), but for x≥0.48, incipient charge ordering takes place along with antiferromagnetism. At x=0.48, the ferromagnetic-antiferromagnetic phase transition in ceramics occurs at less than 85 kOe but requires significantly larger field for increasing x. These observations are in contrast to what is found in the single crystals, which are all FM.  相似文献   

17.
The monophosphate tungsten bronzes KxP4W8O32 (0.75<x<2) are quasi-two-dimensional conductors which show electronic transitions at a critical temperature Tc depending on the concentration of the alkali metal. The phase diagram shows a maximum at for x=1.30. We report specific heat measurements in the range 120-190 K. The thermal anomalies found at the transition temperature are larger than in conventional charge density wave materials. This corroborates that the transition is not a ‘pure’ charge density wave transition and that a structural transition dominates the instability.  相似文献   

18.
Y.D. Su 《Applied Surface Science》2009,255(18):8164-8170
We deposit ternary WCxNy thin films on Si (1 0 0) substrates at 500 °C using direct current (DC) reactive magnetron sputtering in a mixture of CH4/N2/Ar discharge, and explore the effects of substrate bias (Vb) on the intrinsic stress, preferred orientation and phase transition for the obtained films by virtue of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and selective area electron diffraction (SAED). We find that with increasing the absolute value of Vb up to 200 V the carbon (x) and nitrogen (y) atom concentrations of WCxNy films keep almost constant with the values of 0.75 and 0.25, respectively. The XPS and SAED results, combined with the density-functional theory (DFT) calculations on the electronic structure of WC0.75N0.25, show our obtained WCxNy films are single-phase of carbonitrides. Furthermore, we find that the compressive stress sharply increases with increasing the absolute value of Vb, which leads to a pronounced change in the preferred orientation and phase structure for the film, in which a phase transition from cubic β-WCxNy to hexagonal α-WCxNy occurs as Vb is in the range of −40 to −120 V. In order to reveal the relationship between the stress and phase transition as well as preferred orientation, the DFT calculations are used to obtain the elastic constants for β-WCxNy and α-WCxNy. The calculated results show that the preferred orientation is dependent on the competition between strain energy and surface energy, and the phase transition can be attributed to a decrease in the strain energy.  相似文献   

19.
The co-existence of ferroelectric and ferromagnetic properties at room temperature is very rarely observed. We have been successful in converting ferroelectric PbTiO3 into a magnetoelectric material by partly substituting Fe at the Ti site. The Pb(FexTi1−x)O3 system exhibits ferroelectric and ferromagnetic ordering at room temperature. Even more remarkably, our results demonstrate a coupling between the two order parameters. Hence it could be a futuristic material to provide cost effective and simple path for designing novel electromagnetic devices.  相似文献   

20.
The effects of Al substitution on the phase transitions and magnetocaloric effect of Ni43Mn46Sn11−xAlx (x=0-2) ferromagnetic shape memory alloys were investigated by X-ray diffraction and magnetization measurements. With the increase of Al content, the cell volume decreases due to the smaller radius of Al, and the martensitic transformation temperature increases rapidly, while the Curie temperature of austenitic phase shows a small increase. A large positive and a negative magnetic entropy change were observed near the first-order martensitic transition and the second-order magnetic transition, respectively. The magnetic entropy changes, hysteresis behavior, and refrigerant capacity near the two transitions are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号