首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NaEu0.96Sm0.04(MoO4)2 was prepared by the Pechini method (P phosphor) and as a comparison, also by solid-state reaction technique (S phosphor). The photo-luminescent properties, the morphology and the grain size were investigated. The phosphors show broadened excitation band around 400 nm, high intensity of Eu3+5D07F2 emission upon excitation around 400 nm, and appropriate CIE chromaticity coordinates. Intensive red light-emitting diodes (LEDs) were fabricated by combining the phosphor and a 400 nm InGaN chip for the first time, which confirm that the phosphor is a good candidate for near UV LED. The luminescent intensity of P phosphor prepared at 700 °C is near that of S phosphor prepared at 800 °C. In addition, P phosphor shows advantages of lower calcining temperature, shorter heating time, and smaller grain size. Considering all these factors, the suitable method for preparing the promising near UV LED phosphor NaEu0.96Sm0.04(MoO4)2 is recommended to be the Pechini process at 700 °C.  相似文献   

2.
Spherical-shaped Li4Ti5O12 anode powders with a mean size of 1.5 μm were prepared by spray pyrolysis. The precursor powders obtained by spray pyrolysis had no peaks of crystal structure of Li4Ti5O12. The powders post-treated at temperatures of 800 and 900 °C had the single phase of spinel Li4Ti5O12. The powders post-treated at a temperature of 1000 °C had main peaks of the Li4Ti5O12 phase and small impurity peaks of Li2Ti3O7. The spherical shape of the precursor powders was maintained after post-treatment at temperatures below 800 °C. The Brunauer-Emmett-Teller (BET) surface areas of the Li4Ti5O12 anode powders post-treated at temperatures of 700, 800 and 900 °C were 4.9, 1.6 and 1.5 m2/g, respectively. The initial discharge capacities of Li4Ti5O12 powders were changed from 108 to 175 mAh/g when the post-treatment temperatures were changed from 700 to 1000 °C. The maximum initial discharge capacity of the Li4Ti5O12 powders was obtained at a post-treatment temperature of 800 °C, which had good cycle properties below current densities of 0.7 C.  相似文献   

3.
A comparative study of the luminescent properties of Y2O3:Eu3+ phosphor powders and thin films sputtered from targets prepared from combustion synthesized powders is reported. Thin films of (Y0.96Eu0.04)2O3 were deposited on silicon substrates. Films deposited at 600 °C had both monoclinic and cubic phases of Y2O3, which developed to an oriented cubic phase after annealing. Films and powders showed a linear dependence of the intensity of the 5D77F2 (611 nm) transition with temperature in the range 26-660 °C with an average rate of change of 1.8×10−4 °C−1. The rate of change appears to be dependent on the Eu3+ concentration. This work shows that these thin films can be used as thermographic phosphors for remote temperature measurements.  相似文献   

4.
Nano-sized Tb-doped YAG phosphor particles were synthesized by a mixed solvo-thermal method using stoichiometric amounts of inorganic aluminum and yttrium salts. The formation of YAG:Tb was investigated by means of XRD and IR spectra. The pure crystalline-phase YAG was prepared under moderate synthesis conditions (300 °C and 10 MPa), indicating that ethanol partly replaces water as the solvent, thus favoring the formation of YAG. TEM images showed that YAG:Tb phosphor particles sintered at 300 °C were basically of spherical shape, with good dispersion about a particle size of around 80 nm. The crystalline YAG:Tb showed green emission with 5D47F6 (544 nm) as the most prominent group. The PL intensity and crystallinity of YAG:Tb phosphors increases with increasing synthesis temperature, and reaches maximum brightness at 300 °C, which is lower than that exhibited by a commercial product.  相似文献   

5.
Alumina (Al2O3) powders doped with europium trivalent (Eu3+) were prepared by a low-temperature (∼280 °C) combustion synthesis technique. When the powder was heat treated at 1200 °C for 2 h in the presence of flowing ammonia (NH3), α-Al2O3 crystalline ceramic powders was obtained. The analysis of the luminescence showed that Eu3+ was reduced to europium divalent (Eu2+) after the heat-treatment process. Under ultraviolet (UV) lamp excitation (λ=254 nm) these powders containing sub-microcrystalline structures present bright red (Al2O3:Eu3+) and green (Al2O3:Eu2+) luminescence indicating that this material is a potential candidate for applications in phosphor technology.  相似文献   

6.
ZnS and SiO2-ZnS nanophosphors, with or without different concentration of Mn2+ activator ions, were synthesized by using a sol-gel method. Dried gels were annealed at 600 °C for 2 h. Structure, morphology and particle sizes of the samples were determined by using X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The diffraction peaks associated with the zincblende and the wurtzite structures of ZnS were detected from as prepared ZnS powders and additional diffraction peaks associated with ZnO were detected from the annealed powders. The particle sizes of the ZnS powders were shown to increase from 3 to 50 nm when the powders were annealed at 600 °C. An UV-Vis spectrophotometer and a 325 nm He-Cd laser were used to investigate luminescent properties of the samples in air at room temperature. The bandgap of ZnS nanoparticles estimated from the UV-Vis data was 4.1 eV. Enhanced orange photoluminescence (PL) associated with 4T16A1 transitions of Mn2+ was observed from as prepared ZnS:Mn2+and SiO2-ZnS:Mn2+ powders at 600 nm when the concentration of Mn2+ was varied from 2-20 mol%. This emission was suppressed when the powders were annealed at 600 °C resulting in two emission peaks at 450 and 560 nm, which can be ascribed to defects emission in SiO2 and ZnO respectively. The mechanism of light emission from Mn2+, the effect of varying the concentration on the PL intensity, and the effect of annealing are discussed.  相似文献   

7.
The nanocrystalline Ni0.53Cu0.12Zn0.35Fe1.88O4 and BaTiO3 powders were prepared using Microwave-Hydrothermal (M-H) method at 160 °C/45 min. The as synthesized powders were characterized using the X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). The size of the powders that were synthesized using M-H system was found to be ∼30 and ∼50 nm for ferrite phase and ferroelectric phases, respectively. The powders were densified using microwave sintering method at 900 °C/30 min. The ferrite and ferroelectric phases were observed from XRD and morphology of the composites was observed with the Scanning Electron Microscope (SEM).The magnetic hysteresis loops were recorded using the Vibrating Sample Magnetometer (VSM).The frequency dependence of real (μ′) and imaginary (μ″) parts of permeability was measured in the range of 1 MHz-1.8 GHz. The permeability decreases with an increase of BaTiO3 content at 1 MHz. The transition temperature (TC) of ferrite was found to be 245 °C. The TC of composite materials decreases with an increase in BaTiO3 content.  相似文献   

8.
Nanoscaled Zn2SiO4:Mn2+ green phosphor with regular and uniform morphology was synthesized by hydrothermal method at a low temperature of 140 °C. The structure and morphology of the phosphor was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of the hydrothermal temperature and the time on the crystallite structure and the vacuum ultraviolet (VUV) photoluminescence (PL) properties were evaluated. The as-synthesized nanoscaled Zn2SiO4:Mn2+ phosphor exhibited intensive broad emission around 523 nm, which was attributed to the 4T16A1 transition of Mn2+. The PL intensity increased along with the increasing hydrothermal temperature and time. The heat-treated phosphors exhibited higher PL intensity than the corresponding samples prepared using the conventional solid-state reaction.  相似文献   

9.
Lanthanum aluminate ceramic powders could be prepared by a combined gel precipitation process from metal chlorides using ammonia. A slight modification in the conventional gel precipitation technique was carried out by introducing a step of ultrasonication followed by centrifugal washing of the gel. The dried gels produced pure phase lanthanum aluminate powders on calcination at 1100 °C for the combined gel-precipitated powders, and at 600 °C for the washed gel. The phase evolution was studied and it was found that the delay in obtaining monophasic LaAlO3 in the combined gel-precipitated powder owed to the crystallization of an impure phase LaOCl. This phase was not detected in the washed gel (WG) powders. TEM micrographs showed a uniform morphology for the calcined WG powders, which were in contrast to the irregular particles in the gel-precipitated (GP) powders. The uniform morphology was assigned to the ultrasonic effects during washing of the gel.  相似文献   

10.
Fe74Ni3Si13Cr6W4 amorphous alloy powders were annealed at different temperature (T) for 1.5 h to fabricate the corresponding amorphous and nanocrystalline powders. The influences of T on the crystalline structure, morphology, magnetic and microwave electromagnetic properties of the resultant samples were investigated via X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer. The results show that the powder samples obtained at T of 650 °C or more are composed of lots of ultra-fine α-Fe(Si) grains embedded in an amorphous matrix. When T increases from 350 to 750 °C, the saturated magnetization and coercivity of the as-annealed powder samples both increase monotonously whereas the relative real permittivity shows a minimal value and the relative real permeability shows a maximal value at T of 650 °C. Thus the powder samples annealed at 650 °C show optimal reflection loss under −10 dB in the whole C-band. These results here suggest that the annealing heat treatment of Fe-based amorphous alloy is an effective approach to fabricate high performance microwave absorber with reasonable permittivity and large permeability simultaneously via adjusting T.  相似文献   

11.
A novel blue light-emitting phosphor, Eu2+-doped magnesium strontium aluminate (MgSrAl10O17:Eu2+), for plasma display panel (PDP) application was developed. X-ray diffraction (XRD) patterns disclosed that the phosphor annealed at 1500 °C for 5 h was a pure MgSrAl10O17 phase. Field emission scanning electron microscopy (FE-SEM) images showed the particle size of the phosphor was less than 3 μm. The phosphor shows strong and broad blue emission under vacuum ultraviolet (VUV) light excitation. After baking at 400-600 °C and irradiation with VUV light for 300 h, the phosphor still keep excellent VUV luminescence properties exhibiting good stability against high temperature baking and VUV irradiation. The decay time was short as 1.09 μs and the quantum yield was high to 0.77±0.02. All the characteristics indicated that MgSrAl10O17:Eu2+ would be a promising blue phosphor for PDP application.  相似文献   

12.
Preparation of ferroelectric bismuth titanate (Bi4Ti3O12) is carried out by solution combustion route with urea as fuel at much lower calcinations temperatures. The single phase bismuth titanate was obtained after calcinations at 800 °C. SEM micrographs of the calcined powders show agglomerated, flaky and foamy morphology, which is typical of combustion synthesis and that of sintered ceramics shows the grain formation. Behavior of dielectric constant and dielectric loss as a function of temperature of as-prepared sample are reported in this communication. Ferroelectric to paraelectric phase transition occurs at the temperature Tc ∼ 660 °C. Its remnant polarization (2Pr) is very less of the order of 0.012 μC/cm2.  相似文献   

13.
La0.8Sr0.2MnO3 (LSMO) thin films were fabricated on alumina substrates by an improved sol-gel dip-coating process. It was found that multiple dip-coating process could not be performed until the pre-firing temperature reached 600 °C. Different amounts of LSMO powders were added to precursor solution with an aim to avoid cracks in LSMO thin films during calcining caused by the shrinkage mismatch between the film and the substrate. The structure and surface morphology of the films prepared from precursors with and without LSMO powders were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the addition of 56.4 wt.% LSMO powders into the sol-gel precursor solution significantly modified the microstructure of films. A single LSMO perovskite phase was obtained on alumina substrate after calcining at 800 °C for 4 h by the improved sol-gel method. The sheet resistance of the films prepared with different processing parameters was measured by four-point dc method. Results indicated that the sheet resistance of films decreased with increasing the number of coating applications and the amount of LSMO powders.  相似文献   

14.
The red phosphors NaY1−xEux(WO4)2 with different concentrations of Eu3+ were synthesized via the combustion synthesis method. As a comparison, NaEu(WO4)2 was prepared by the solid-state reaction method. The phase composition and optical properties of as-synthesized samples were studied by X-ray powder diffraction and photoluminescence spectra. The results show that the red light emission intensity of the combustion synthesized samples under 394 nm excitation increases with increase in Eu3+ concentrations and calcination temperatures. Without Y ions doping, the emission spectra intensity of the NaEu(WO4)2 phosphor prepared by the combustion method fired at 900 °C is higher than that prepared by the solid-state reaction at 1100 °C. NaEu(WO4)2 phosphor synthesized by the combustion method at 1100 °C exhibits the strongest red emission under 394 nm excitation and appropriate CIE chromaticity coordinates (x=0.64, y=0.33) close to the NTSC standard value. Thus, its excellent luminescence properties make it a promising phosphor for near UV InGaN chip-based red-emitting LED application.  相似文献   

15.
BaAl2O4:Eu2+,Nd3+,Gd3+ phosphors were prepared by a combustion method at different initiating temperatures (400–1200 °C), using urea as a comburent. The powders were annealed at different temperatures in the range of 400–1100 °C for 3 h. X-ray diffraction data show that the crystallinity of the BaAl2O4 structure greatly improved with increasing annealing temperature. Blue-green photoluminescence, with persistent/long afterglow, was observed at 498 nm. This emission was attributed to the 4f65d1–4f7 transitions of Eu2+ ions. The phosphorescence decay curves were obtained by irradiating the samples with a 365 nm UV light. The glow curves of the as-prepared and the annealed samples were investigated in this study. The thermoluminescent (TL) glow peaks of the samples prepared at 600 °C and 1200 °C were both stable at ∼72 °C suggesting that the traps responsible for the bands were fixed at this position irrespective of annealing temperature. These bands are at a similar position, which suggests that the traps responsible for these bands are similar. The rate of decay of the sample annealed at 600 °C was faster than that of the sample prepared at 1200 °C.  相似文献   

16.
BaGd2O4, BaLa2O4 and SrLa2O4 powders doped with different concentrations of Eu3+ or Tb3+ are prepared by combustion synthesis method and the samples were further heated to 500, 700 and 900 °C to improve the crystallinity of the materials. The structure and morphology of materials have been examined by X-ray diffraction and scanning electron microscopy. It is remarkable that all the samples of BaGd2O4, BaLa2O4 and SrLa2O4 have similar morphology. The SEM images show homogeneous aggregates of varying shapes and sizes, which are composed of a large number of small elliptical shaped crystallites with an average diameter of about 0.5-3.0 μm. Photoluminescence for all materials increases with increase of temperature and shows a maximum for the samples heated to 900 °C with 4 mole% doping of Eu3+ or Tb3+ ions. The luminescence is almost same for all powders when doped with same concentration of Eu3+.  相似文献   

17.
Nanocrystalline lithium ferrite (LiFe5O8) powders have been synthesized by oxalate precursor route. The effects of Fe3+/Li+ mole ratio, and annealing temperature on the formation, crystalline size, morphology and magnetic properties were systematically studied. The Fe3+/Li+ mole ratio was controlled from 5 to 3.33 while the annealing temperature was controlled from 600 to 1100 °C. The resultant powders were investigated by differential thermal analyzer (DTA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). DTA results showed that LiFe5O8 phase started to form at around 520 °C. XRD indicated that LiFe5O8 phase always contained α-Fe2O3 impurity and the hematite phase formation increased by increasing the annealing temperature ?850 °C for different Fe3+/Li+ mole ratios 5, 4.55 and 3.85. Moreover, lithium ferrite phase was formed with high conversion percentage at critical annealing temperature 750–800 °C. Single well crystalline LiFe5O8 phase was obtained at Fe3+/Li+ mole ratio 3.33 and annealing temperatures from 800 to 1000 °C. Maximum saturation magnetization (68.7 emu/g) was achieved for the formed lithium ferrite phase at Fe3+/Li+ mole ratio 3.33 and annealing temperature 1000 °C.  相似文献   

18.
Lithium Calcium borate (LiCaBO3) polycrystalline thermoluminescence (TL) phosphor doped with rare earth (RE3+) elements has been synthesized by high temperature solid state diffusion reaction. The reaction has produced a very stable crystalline LiCaBO3:RE3+ phosphors. Among these RE3+ doped phosphors thulium doped material showed maximum TL sensitivity with favorable glow curve shape. TL glow curve of gamma irradiated LiCaBO3:Tm3+ samples had shown two major well-separated glow peaks at 230 and 430 °C. The glow peak at 430 °C is almost thrice the intensity of the glow peak at 230 °C. The TL sensitivity of the phosphor to gamma radiation was about eight times that of TLD-100 (LiF). Photoluminescence and TL emission spectra showed the characteristic Tm3+ peaks. TL response to gamma radiation dose was linear up to 103 Gy. Post-irradiation TL fading on storage in room temperature and elevated temperatures was studied in LiCaBO3:Tm3+ phosphor.  相似文献   

19.
Nanocrystalline ZnFe2O4 powder was prepared by the auto-combustion method using citric acid, acetic acid, carbamide and acrylic acid as fuel additives. Pure spinel zinc ferrite with the crystallite size of about 15 nm can be obtained by using acrylic acid as fuel additive. Samples prepared using other fuel additives contain ZnO impurities. In order to eliminate ZnO impurities, the sample prepared with citric acid as fuel additive was annealed at different temperatures up to 1000 °C in air and in argon. Annealed powders have pure ZnFe2O4 phase when annealing temperature is higher than 650 °C in air. Sample annealed at 650 °C in air is paramagnetic. However, annealed powders become a mixture of Fe3O4 and FeO after annealing at 1000 °C in argon atmosphere due to Zn volatility and the reduction reaction.  相似文献   

20.
Nanoplates of the MgAl2O4 spinel doped with Eu3+ ions were prepared by a microwave assisted hydrothermal method. Structural properties of the precursor calcined at 700 and 1000 oC powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). According to the obtained XRD patterns the formation of single-phase spinels after calcination was confirmed. The average spinel particle size was determined to be 11 nm after calcination at 700 °C and it increased up to 14 nm after calcination at 1000 °C. The photoluminescent properties of prepared powders with different Eu3+ ion concentrations (0-5% mol) were investigated using excitation and emission spectroscopy at room and low temperatures (77 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号