首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CN薄膜结构特性的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用离化团束(ICB)方法在Si(111)衬底上生长了CN薄膜。X光衍射(XRD)分析表明薄膜呈β-C3N4晶态结构,X射线光电子能谱(XPS)测定薄膜含N量为20%,并且观察到C1s和N1s芯能级谱中存在双峰。红外吸收光谱呈现C—N和C≡N的吸收峰。高能反射式电子衍射(RHEED)也证实薄膜中存在晶态物质。薄膜的努氏显微硬度值达到6200kgf·mm-2关键词:  相似文献   

2.
傅广生  于威  王淑芳  李晓苇  张连水  韩理 《物理学报》2001,50(11):2263-2268
利用直流辉光放电等离子体辅助的脉冲激光沉积技术在Si衬底上生长了碳氮薄膜.通过扫描电子显微镜、X射线衍射、X射线光电子能谱、俄歇电子能谱等多种手段,对薄膜的形貌、成分、晶体结构、价键状态等特性进行了分析和确定.结果表明,沉积薄膜为含有非晶SiN和晶态氮化碳颗粒结构,晶态成分呈多晶态,主要为α-C3N4相、β-C3N4相,晶粒大小为40—60nm.碳氮之间主要以C-N非极性共价键形式相结合. 关键词: 脉冲激光沉积 直流辉光放电 碳氮薄膜  相似文献   

3.
The ENDOR experiments indicate that there are at least two different types of dangling bonds in aSi:H containing a number of hydrogen, i.e., the normal dangling bonds and the dangling bonds having a hydrogen as its neighbor. It is also shown that prolonged exposure to light at room temperature causes these two types of dangling bonds to be created. The hyperfine splitting due to 29Si, i.e. 79G, in sputtered aSi:H is also discussed.  相似文献   

4.
By annealing evaporated a-Si films between 450°C and 620°C, it is found that new dangling bonds are generated. These dangling bonds can act as hopping centres. Quantitative analysis of experimental results on electrical resistivity and ESR measurements favours a conduction mechanism of hopping to nearest neighbours between room temperature and ?100°C. Films annealed just before crystallisation temperature have a density of states near Fermi level of about 3 × 1018 cm?3 eV?1.  相似文献   

5.
纳米Si/C/N复相粉体的微波介电特性   总被引:11,自引:0,他引:11       下载免费PDF全文
赵东林  周万城  万伟 《物理学报》2001,50(12):2471-2476
研究了纳米Si/C/N复相粉体在8.2—18GHz的微波介电特性,采用双反应室激光气相合成纳米粉体装置,以六甲基二硅胺烷((Me3Si)2NH)(Me∶CH3)为原料,用激光诱导气相反应法合成纳米Si/C/N复相粉体,复相粉体的粒径为20—30nm.纳米Si/C/N复相粉体与石蜡复合体的介电常量的实部(ε′)和虚部(ε″)以及介电损耗角正切(tan δ=ε″/ε′)随纳米粉体含量的增加而增大,ε′和ε″与纳米粉体体积分数(v)之间符合二次函 关键词: 纳米Si/C/N复相粉体 微波介电常量 微观结构  相似文献   

6.
Substoichiometric germanium oxide thin films were prepared by evaporation of GeO2 powder. The as-deposited samples showed a luminescence band in the visible range. Hydrogen was used to passivate the dangling bond defects and therefore to determine the origin of photoluminescence in the germanium oxide films. Hydrogen was introduced in the films from an electron cyclotron resonance (ECR) plasma source during or after the evaporation. The films hydrogenated during evaporation contain little oxygen because of an etching mechanism. In the post-hydrogenated films, the oxygen content is higher. With the hydrogenation treatment, the oxygen dangling bonds are suppressed. It is proposed that the photoluminescence in the visible range is attributed to the structural defects.  相似文献   

7.
Amorphous Si:C:O:H films were fabricated at low temperature by C2F6 and O2/C2F6 plasma treating silicone oil liquid. The a-Si:C:O:H films fabricated by C2F6 plasma treatment exhibited white photoluminescence at room temperature, while that by O2/C2F6 plasma treatment exhibited blue photoluminescence. Fourier transformed infrared spectroscopy and Raman spectroscopy studies showed that the sp3 and sp2 hybridized carbons, SiC bond, SiO bond and carbon-related defects in a-Si:C:O:H films correlated with photoluminescence. It is suggested that the blue emission at 469 nm was related to the sp3 and sp2 hybridized carbons, SiC bond, carbon dangling bonds as well as SiO short chains and small clusters, while the light emitting at 554 nm was related to the carbon-related defects.  相似文献   

8.
The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me3Si)2NH) (Me:CH3) and SiH4–C2H2, respectively, by a laser-induced gas-phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured at a frequency range of 8.2–12.4 GHz. The real part (′) and imaginary part (″) of the complex permittivity, and dissipation factor (tg δ=″/′) of nano Si/C/N composite powder are much higher than those of nano SiC powder and bulk SiC, Si3N4, SiO2, and Si, especially the tg δ. The promising features of nano Si/C/N composite powder would be due to more complicated Si, C, and N atomic chemical environment than in a mixture of pure SiC and Si3N4 phase. The charged defects and quasi-free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. Because there exists graphite in the nano Si/C/N composite powder, some charge carries are related to the sp3 dangling bonds (of silicon and carbon) and unsaturated sp2 carbons. The high ″ and tg δ of nano Si/C/N composite powder were due to the dielectric relaxation. The nano Si/C/N composite powder would be a good candidate for electromagnetic interface shielding material.  相似文献   

9.
《Applied Surface Science》2002,185(3-4):262-266
Silicon–carbon nitride (SiCN) thin films were deposited on Si substrate at room temperature by r.f. reactive sputtering. Fourier transform infrared spectroscopy (FTIR), optical absorption spectra (α(λ)) and electrical conductivity (σ) were studied for the thin films. The effect of the annealing on IR and σ was investigated at different temperatures. IR analysis indicates that Si–H, C–N, Si–C, Si–N, C–N and CN bonds are present in a-SiCN:H films. A shift of the stretching mode for Si–H bond to the high-wavenumber side is observed with increasing the nitrogen flow ratio γN2(=N2/(Ar+H2+N2+CH4)). The shift is from 2000 to 2190 cm−1 when γN2=13.7%. The study shows that the film structure and optical and electrical properties are obviously modified readily by controlling the process parameters of deposition. The improvement in the film properties, e.g., good thermal stability, is explained mainly in terms of the cross-linked structure between the Si, C and N atoms.  相似文献   

10.
Silicon-incorporated diamond like carbon (Si-DLC) films were deposited via DC plasma-enhanced chemical vapor deposition (PECVD) on glass and alumina substrates at a substrate temperature of 473 K. The precursor gas used was acetylene and for silicon incorporation tetraethyl orthosilicate dissolved in methanol was used. Silicon atomic percentage in the films was varied from 0% to 19.3% as measured from energy dispersive X-ray analysis. Fourier transformed infrared spectroscopy studies depicted the presence of Si-C, Si-H and Si-H2 bonding within the films. The binding energies of C 1s, Si 2s and Si 2p were determined from X-ray photoelectron spectroscopic studies. UV-vis-NIR spectroscopic studies were used to determine the optical gaps as well as the Urbach parameters of the samples. Room temperature photoluminescence study showed a broad peak centered at around 467 nm. Also the peak intensity was found to increase monotonically with Si percentages. The results are discussed in terms of the electronic structure of a-C:H, the doping induced defect states and the enhanced carbon dangling bonds via the formation of more sp3 hybridized carbon network.  相似文献   

11.
In this work we study the effect reduction in the density of dangling bond species D0 states in rare-earth (RE) doped a-Si films as a function concentration for different RE-specimens. The films a-Si1−xREx, RE=Y3+, Gd3+, Er3+, Lu3+) were prepared by co-sputtering and investigated by electron spin resonance (ESR) and Raman scattering experiments. According to our data the RE-doping reduces the ESR signal intensity of the D0 states with an exponential dependence on the rare-concentration. Furthermore, the reduction produced by the magnetic rare-earths Gd3+ and Er3+ is remarkably greater than that caused by Y3+ and Lu3+, which led us to suggest an exchange-like coupling between the spin of the magnetic REs3+ and the spin of silicon neutral dangling bonds.  相似文献   

12.
Si nanocrystals (NCs) embedded in an SiC matrix were prepared by the deposition of Si-rich Si1?xCx/SiC nanomultilayer films using magnetron sputtering, subsequently followed by thermal annealing in the range of 800~1200 °C. As the annealing temperature increases to 1000 °C, Si NCs begin to form and SiC NCs also start to emerge at the annealing temperature of 1200 °C. With the increase of annealing temperature, two photoluminescence (PL) peaks have an obvious redshift. The intensity of the low-energy PL peak around 669~742 nm gradually lowers, however the intensity of high-energy PL peak around 601~632 nm enhances. The low-energy PL peak might attribute to dangling bonds in amorphous Si (a-Si) sublayers, and the redshift of this peak might be related to the passivation of Si dangling bonds. Whereas the origin of the high-energy PL peak may be the emergence of Si NCs, the redshift of this peak correlates with the change in the size of Si NCs.  相似文献   

13.
任圣  马忠元  江小帆  王越飞  夏国银  陈坤基  黄信凡  徐骏  徐岭  李伟  冯端 《物理学报》2014,63(16):167201-167201
采用电子束蒸发技术在Si衬底上制备了亚氧化硅SiOx(x=1.3)薄膜,研究了不同温度热退火处理的SiOx薄膜作为阻变层的ITO/SiOx/Si/Al结构的阻变特性.研究发现,在电极尺寸相同的条件下,随着退火温度的增加,该结构的高低阻态比显著提高,最高可达109.X射线光电子能谱和电子顺磁共振能谱的分析表明,不同退火温度下形成的不同价态的硅悬挂键是低阻态下细丝通道的主要来源.椭偏仪的测试结果表明,经过热退火处理的SiOx薄膜折射率的增大是导致高阻态下器件电阻增大的原因.  相似文献   

14.
Cyanide treatment, which includes the immersion of Si in KCN solutions followed by a rinse, effectively passivates interface states at Si/SiO2 interfaces by the reaction of CN ions with interface states to form Si-CN bonds. X-ray photoelectron spectroscopy (XPS) measurements show that the concentration of the CN species in the surface region after the cyanide treatment is ∼0.25 at.%. Take-off angle-dependent measurements of the XPS spectra indicate that the concentration of the CN species increases with the depth from the Si/SiO2 interface at least up to ∼2 nm when ultrathin SiO2 layers are formed at 450 °C after the cyanide treatment. When the cyanide treatment is applied to metal-oxide-semiconductor (MOS) solar cells with 〈ITO/SiO2/n-Si〉 structure, the photovoltage greatly increases, leading to a high conversion efficiency of 16.2% in spite of the simple cell structure with no pn-junction. Si-CN bonds are not ruptured by air mass 1.5 100 mW cm−2 irradiation for 1000 h, and consequently the solar cells show no degradation. Neither are Si-CN bonds broken by heat treatment at 800 °C performed after the cyanide treatment. The thermal and irradiation stability of the cyanide treatment is attributable to strong Si-CN bonds, whose bond energy is calculated to be 1 eV higher than that of the Si-H bond energy using a density functional method.  相似文献   

15.
The tetrahedral amorphous carbon (ta-C) films with more than 80% sp3 fraction firstly were deposited by filtered cathode vacuum arc (FCVA) technique. Then the energetic nitrogen (N) ion was used to bombard the ta-C films to fabricate nitrogenated tetrahedral amorphous carbon (ta-C:N) films. The composition and structure of the films were analyzed by visible Raman spectrum and X-ray photoelectron spectroscopy (XPS). The result shows that the bombardment of energetic nitrogen ions can induce the formation of CN bonds, the conversion of C-C bonds to CC bonds, and the increase of size of sp2 cluster. The CN bonds are made of CN bonds and C-N bonds. The content of CN bonds increases with the increment of N ion bombardment energy, but the content of C-N bonds is inversely proportional to the increment of nitrogen ion energy. In addition, C≡N bonds are not existed in the films. By the investigation of AFM (atom force microscopy), the RMS (root mean square) of surface roughness of the ta-C film is about 0.21 nm. When the bombarding energy of N ion is 1000 eV, the RMS of surface roughness of the ta-C:N film decreases from 0.21 to 0.18 nm. But along with the increment of the N ion energy ranging from 1400 to 2200 eV again, the RMS of surface roughness of the ta-C:N film increases from 0.19 to 0.33 nm.  相似文献   

16.
We have investigated the role of doping and paramagnetic states on the electronic transport of networks assembled from freestanding Si nanocrystals (Si-NCs). Electrically detected magnetic resonance (EDMR) studies on Si-NCs films, which show a strong increase of conductivity with doping of individual Si-NCs, reveal that P donors and Si dangling bonds contribute to dark conductivity via spin-dependent hopping, whereas in photoconductivity, these states act as spin-dependent recombination centers of photogenerated electrons and holes. Comparison between EDMR and conventional electron paramagnetic resonance shows that different subsets of P-doped nanocrystals contribute to the different transport processes.  相似文献   

17.
韩亮  邵鸿翔  何亮  陈仙  赵玉清 《物理学报》2012,61(10):106803-106803
利用磁过滤真空阴极电弧技术制备了sp3键含量不小于80%的四面体非晶碳薄膜(ta-C), 然后通过氮离子束改性技术制备了氮掺杂的四面体非晶碳(ta-C:N)薄膜. 利用Raman光谱和X射线光电子能谱对薄膜结构的分析,研究了氮离子轰击能量对ta-C:N薄膜结构的影响. 氮离子对ta-C薄膜的轰击,形成了氮掺杂的ta-C:N薄膜. 氮离子轰击诱导了薄膜中sp3键向sp2键转化, 以及CN键的形成.在ta-C:N薄膜中,氮掺杂的深度和浓度随着氮离子能量的增大而增大. ta-C:N薄膜中sp2键的含量和sp2键团簇的尺寸随着氮离子轰击能量的增大而增加; 在ta-C:N薄膜中, CN键主要由C-N键和C=N键构成, C-N 键的含量随着氮离子轰击能量的增大而减小,但是C=N 键含量随着氮离子轰击能量的增大而增大.在ta-C:N薄膜中不含有C≡N键结构.  相似文献   

18.
纳米非晶氮化硅键态结构的X射线径向分布函数研究   总被引:13,自引:1,他引:12       下载免费PDF全文
蔡树芝  牟季美  张立德  程本培 《物理学报》1992,41(10):1620-1626
本文用X射线径向分布函数法研究了室温到1000℃不同退火条件下的纳米非晶氮化硅样品的微结构和键合特征。观察到占庞大体积百分数界面不是“gas-like”结构,而是与非晶纳米粒子不同的新的短程序结构。Si—N键长和最近邻原子配位数(CN)均比传统Si3N4小,并存在大量的Si悬键和不饱和键。纳米氮化硅与传统Si3N4饱和共价键不同,是含有大量非饱和键和悬键的非典型共价键结构。由于键配位的不饱和特征,纳米非晶氮化硅的分子式应写作Si3-xN4-y。纳米非晶氮化硅出现强极性与非饱和键和悬键有密切的关系。 关键词:  相似文献   

19.
利用多普勒增宽谱和电子顺磁共振研究了掺硼和掺硫金刚石薄膜的缺陷状态.多普勒增宽谱的结果表明,不同杂质元素掺杂的金刚石薄膜,其中使正电子湮没的缺陷种类是相同的;正电子与不同杂质元素硼、硫之间的相互作用不明显;少量硼可使金刚石膜中的空位浓度减少.EPR结果表明,各掺杂样品的顺磁信号主要来自于金刚石的碳悬键. 关键词: 金刚石 掺杂 多普勒增宽谱 电子顺磁共振  相似文献   

20.
A series of Schiff-bases chromophores containing imine or double C=C bond linkers between the donor and acceptor have been studied by first-principles calculations. The molecular structures, electronic properties and second order nonlinearities were investigated by DFT and ab initio methods. The optimized structural parameters of these Schiff-base derivates showed that these compounds are stable. The results of TD-DFT calculations indicate that the derivatives with the heterocyclic and imine linker have a red shift absorption compared to derivatives with the double C=C or N=N bonds. The analysis of the frontier molecular orbitals indicates that the CN group and the heterocycle linked by the CN or imine group has contribution to the LUMO orbital while the groups N(CH3)2 and the benzene ring linked by the double C=C or N=N bond have contribution to the HOMO orbital. The CN and the heterocyclic acceptors enable the derivatives to have a larger first static hyperpolarizability. However, the compounds 3-{4-[(4-Dimethylamino-phenylimino)-methyl]-pyridin-1-yl}-propanel-1-sulfonoperoxoic acid and 3-{4-[(4-Dimethylamino-phenylimino)-methyl]-quinolin-1-yl}propanel-1-sulfonoperoxoic acid with a substituent also have large first static hyperpolarizabilities due to the overwhelming contributions of electron density of the group to the HOMO orbital, that is, the HOMO orbital were constituted by the SO 3 ? group only. In order to understand the influence of the energy gap (??E) between the HOMO and the LUMO orbitals on the first static hyperpolarizability, we calculated the energy gap (??E) of all Schiff-base compounds. The results show that the smaller the HOMO-LUMO energy gap the larger the first static hyperpolarizability. The present study demonstrated that these compounds which have pure C=N double bond and heterocyclic substitution groups may have potential applications in the development of NLO materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号