首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Organosilicon gels [Co(NH2R2)2Cl2] and [Cr(NH2R2)3Cl3], containing a diaminodichloride complex of cobalt(II) and triaminotrichloride complex of chromium(III) (R2 = CH2CH2CH2SiO(OEt)), were synthesized by the hydrolysis of complexes [Co(NH2R1)2Cl2] (I) and [Cr(NH2R1)3Cl3] (II) incorporating peripheral triethoxysilyl groups (R1 = CH2CH2CH2Si(OEt)3). The coprecipitated [Co(NH2R2)2Cl2] · 4NH2R3, [Cr(NH2R2)3Cl3] · 6NH2R3, [Co(NH2R2)2Cl2] · 2SiO2, and [Cr(NH2R2)3Cl3] ·xSiO2 · (3 – x)SiHO1.5 (R3 = CH2CH2CH2SiO1.5) gels were obtained by cohydrolysis of complexes I and II with 3-aminopropyltriethoxysilane or triethoxysilane. Interaction with SiH(OEt)3 is accompanied by the decomposition of silicon hydride groups and the formation of tetraethoxysilane derivatives. The heating of dry gels in a flow of argon or oxygen to 600° results in the formation of amorphous silica having a specific surface area 2–467 m2/g and containing crystalline metals, their chlorides, oxides, silicates, or carbides.  相似文献   

2.
New [ML(H2O)2] complexes (M = Co2+, Ni2+, or Cu2+; H2L = diphenylthiocarbazide) were synthesized and studied using IR and diffuse reflection electronic spectroscopy, magnetic chemistry, conductometry, and DTA. The metals were shown to coordinate L2–through nitrogen and sulfur atoms. The complex [CuL(H2O)2] is a dimer.  相似文献   

3.
This study examines the synthesis of two geminal bisphosphonate ester-supported Ln3+ complexes [Ln(L3)2(NO3)3] (Ln = Nd3+ (5), La3+ (6)) and optical properties of the neodymium(III) complex. These results are compared to known mono-phosphonate ester-based Nd3+ complexes [Nd(L1/L2)3X3]n (X = NO3, n = 1; Cl, n = 2) (1–4). The optical properties of Nd3+ compounds are determined by micro-photoluminescence (µ-PL) spectroscopy which reveals three characteristic metal-centered emission bands in the NIR region related to transitions from 4F3/2 excited state. Additionally, two emission bands from 4F5/2, 2H9/24IJ (J = 11/2, 13/2) transitions were observed. PL spectroscopy of equimolar complex solutions in dry dichloromethane (DCM) revealed remarkably higher emission intensity of the mono-phosphonate ester-based complexes in comparison to their bisphosphonate ester congener. The temperature-dependent PL measurements enable assignment of the emission lines of the 4F3/24I9/2 transition. Furthermore, low-temperature polarization-dependent measurements of the transitions from R1 and R2 Stark sublevel of 4F3/2 state to the 4I9/2 state for crystals of [Nd(L3)2(NO3)3] (5) are discussed.  相似文献   

4.
A series of new Schiff base complexes of FeIII, CoII, NiII and CuII containing Ph3P has been prepared and characterised. The Schiff bases have been prepared by the condensation of salicylaldehyde and naphthaldehyde with the appropriate aniline. The complexes have been characterised by analytical, spectral (i.r., electronic, magnetic, e.p.r., 1H-n.m.r.) and electrochemical studies. The new complexes have been used as catalysts for aromatic coupling reactions. Higher catalytic activity has been observed for NiII compared to the other complexes.  相似文献   

5.
Summary.  Sparingly water soluble complexes of lead(II), cadmium(II), and zinc(II) with N-phosphonomethylglycine (glyphosate, NPMG) of the general formulae C3H6O5NPPb, C3H6O5NPCdċ2H2O, and C3H6O5NPZn were synthesized. The complexes were also precipited from a dilute Roundup solution, and their solubility in water was determined. Thermal, diffractometric, and IR spectrophotometric analyses were carried out. It was found that the metal is bonded to glyphosate through the oxygen atoms of the carboxylic and phosphonate groups; metal-nitrogen binding is absent in the above compounds. Studying the complexing behaviour in solution by UV spectrophotometry pointed out that a complex of the composition Pb(II) : NPMG=1:1 with an absorption band at 232 nm is formed. Its stability constant as determined by Job’s method is logK=5.9±0.1. Using potentiometric techniques, the dissociation constant of N-phosphonomethylglycine and the stability constants of its complexes with cadmium (II) and zinc (II) were determined. Received June 30, 1999/Accepted July 21, 1999.  相似文献   

6.
Six complexes, M(HL)2 · nH2O (M=Co, Ni and Fe; n=4) with two ligands, 2-carboxy-benzaldehydebenzoylhydrazone (H2L1) and 2-carboxybenzaldehyde-(4′-methoxy)benzoylhydrazone (H2L2), have been synthesized and characterized on the basis of elemental analyses, molar conductivities, i.r. spectra and thermal analyses. In addition, the suppression ratio for O2- (a) and the suppression ratio for OH· (b) were determined with a 72 spectrophotometer. The 50% inhibition [IC50 (a) and IC50 (b)] of the complexes were studied. This study demonstrated that the complexes have activity in the suppression of O2- (a) and OH· (b). In general, the antioxidative activities increased as the concentration of these complexes increased up to a selected extent. The complexes exhibit more effective antioxidants than the ligands and the series of the ligand (H2L2) are better than the series of the ligand (H2L1) do.  相似文献   

7.
Three new coordination polymers, namely, [CuL0.5] ( 1 ), [Co(H2L)(H2O)2][H2O] ( 2 ), and [(CdCl)0.5Cd0.25(H2L)0.5] ( 3 ) were synthesized under hydrothermal conditions from the corresponding CuII, CoII, and CdII salts with a multidentate ligand of 2,2′,2′′,2′′′‐[2,3,5,6‐tetramethyl‐1,4‐phenylenebis(methylenenitrilo)]tetraacetic acid (H4L). The complexes were characterized by single‐crystal X‐ray diffraction, IR, thermogravimetric, and elemental analyses. Complex 1 crystallizes in the orthorhombic space group Pbca and has a three‐dimensional architecture with infinite two‐dimensional networks linked together by weak Cu–O interactions. Complex 2 crystallizes in the monoclinic space group P2(1) and displays a 2D network. Complex 3 crystallizes in the tetragonal space group P4(2)/ncm and exhibits an infinite 3D architecture that has unusual [Cd2(CO2)4Cl2] dinuclear paddle‐wheel units and [Cd(CO2)4] dodecahedron units. The results showed that the coordination arrangement of central metal atoms and the conformation and coordination mode of organic ligands play an important role in determining the structure of the complexes. The luminescence property of complex 3 was studied in the solid state at room temperature.  相似文献   

8.
Self‐assembled bi‐ and polymetallic complexes of CoII, NiII, ZnII, and CdII were obtained by the reaction of 4,4′‐azopyridine (azpy) with metal tri‐tert‐butoxysilanethiolates (Co, 1 ; Cd, 2 ), acetylacetonates (Ni, 3 ; Zn, 4 ), and acetates (Cd, 5 ). All compounds were characterized by single‐crystal X‐ray structure analysis, elemental analysis, FTIR spectroscopy, and thermogravimetry. Complexes 1 , 2 and 4 , 5 exhibit diverse structural conformations: 1 is bimetallic, 2 and 4 are 1D coordination polymers, and 5 is a 2D coordination framework formed from bimetallic units. The obtained complexes contain metal atoms bridged by a molecule of azpy. The luminescent properties of 1–5 were investigated in the solid state.  相似文献   

9.
Summary N-formamidosalicylaldimine (H2SF) andN-acetamidosalicylaldimine (H2SA) complexes of CuII, NiII and CoII have been synthesized and characterized by analytical, spectroscopic and magnetic data. The ligands coordinate to the metalvia the hydroxyl, carbonyl and imino groups to yield normal paramagnetic and insoluble complexes which decompose above 250°.  相似文献   

10.
Abstract

Monosulfito and bis(hydrogensulfito) cobalt(III) complexes were prepared using sodium sulfite and sodium metabisulfite salts respectively. The two types of products showed different and characterizing patterns of IR and UV-visible spectra. They both contain Co-SO3 linkages and the sulfite groups have similar or different site symmetries in the same compound.  相似文献   

11.

Oxovanadium(IV), isothiocyanatomanganese(III), cyanocobalt(III) and cobalt(II) complexes of tetraaza[14]annulene appended with two crown ethers at 2,3- and 11,12-positions have been prepared. Cation complexation behavior of these cavity-bearing tetraaza[14]annulene complexes has been investigated by optical absorption methods. The cation K + , which necessitates two crown ether cavities for complexation, induces dimerization of the tetraaza[14]annulene complexes, whereas the Na + does not. Formation of the sandwich complexes due to dimerization is hindered by the steric interactions involving the axial ligand as judged by the blue shift of the intense band around 385-425 nm. Judging from its ESR spectrum, the cobalt(II) complex becomes a monomeric dioxygen complex of a 1 : 1 molar ratio in the presence of O 2 and pyridine at 77 K.  相似文献   

12.
New complexes of iron(II), cobalt(II), and nickel(II) with 4-(2-pyridyl)-1,2,4-triazole (PyTrz), [Fe3(PyTrz)8(H2O)4]A6 (A = NO3 -, ClO4 -, Br-) and [M3(PyTrz)8(H2O)4](NO3)6 (M = Co, Ni), were synthesized and studied by X-ray diffraction, magnetochemical method, and electronic and IR spectroscopy. The complex [Fe3(PyTrz)8(H2O)4](NO3)6) was also studied by adiabatic calorimetry. The Fe(II), Co(II), and Ni(II) nitrate complexes were shown to be isostructural to the previously synthesized linear trinuclear [Cu3(PyTrz)8H2O)4](NO3)6 complex. In all compounds, antiferromagnetic exchange interactions between M2+ ions were detected. The complex [Fe3(PyTrz)8(H2O)4](NO3)6 undergoes the 1 A 1 5 T 2 spin transition.  相似文献   

13.
14.
Complexes of Cu(II), Ni(II) and Co(II) with the Schiff bases derived from o-aminobenzoic acid with salicylaldehyde and its 5-chloro and 5-bromo derivatives have been prepared. The 1:1 (metal-ligand) stoichiometry of these complexes is shown by elemental analysis, gravimetric estimations and conductometric titrations while the structures of the complexes are proved by i.r. spectra and thermogravimetric analysis. The magnetic susceptibility and electronic spectra of Cu(II) complexes indicate the nonplanar binuclear structures while that of Ni(II) and Co(II) show their paramagnetic octahedral geometry. The molar conductance values in nitrobenzene indicate the nonelectrolytic behaviour of the complexes. The results show that the complexes of the type (Cu·L)2, Ni·L·3H2O and Co·L·3H2O are formed having solvent molecule in coordination with the metal ion. The monopyridine and monoammonia adducts of Cu(II) complexes were found to be monomeric.  相似文献   

15.
Some 1:1 and 1:2 adducts of cobalt(II), nickel(II) and copper(II) chloroacetates with quinoline N -oxide have been isolated by the interaction of the appropriate metal chloroacetate with quinoline N -oxide (QuinNo). The complexes isolated are of 1:1 stoichiometry of formula [M(CH3_xClxCOO)2QuinNO] (when M=Co(II), Ni(II); X=1,2 and 3 and when M=Cu(II), X=l and 2) except copper(II) trichloroacetate which yields an adduct of 1:2 stoichiometry of formula[Cu(CCI3COO)2(QuinNO)2]. The adducts isolated are soluble in common organic solvents.  相似文献   

16.
New solid complex compounds of Co(II), Ni(II), and Cu(II) with chrysin were obtained. Their composition and some physicochemical properties were studied (thermogravimetric analysis, ultraviolet, visible and infrared spectroscopy, magnetic properties). During heating, the hydrated complexesM(C15H9O4)2·nH2O lose some crystallization water molecules in one or two steps, and then decompose to the oxides. A structure for the compounds was proposed.  相似文献   

17.
Zn(II), Co(II) and Ni(II) complexes with some 5-substituted-1,3,4-thiadiazoles (L1-L4) have been prepared and characterized by conductivity, microanalysis, thermal analysis, infrared and electronic spectra measurements. All complexes behave as 1:1 electrolyte and the ligands are coordinated as bidentate molecules. The stability constants and energy of formation are determined and discussed on the basis of the ligands structure.  相似文献   

18.
19.
Some 1:1 and 1:2 adducts of cobalt(II), nickel(II) and copper(II) chloroacetates with quinoline N -oxide have been isolated by the interaction of the appropriate metal chloroacetate with quinoline N -oxide (QuinNo). The complexes isolated are of 1:1 stoichiometry of formula (M(CH3-xClxCOO)2QuinNO) (when M=Co(II), Ni(Il); X=l, 2 and 3 and when M=Cu(II), X=1 and 2) except copper(II) trichloroacetate which yields an adduct of 1:2 stoichiometry of formula[Cu(CCl3COO)2 (QuinNO)3]. The adducts isolated are soluble in common organic solvents.  相似文献   

20.
A series of polymeric cobalt(II), nickel(II), zinc(II) and cadmium(II) azido complexes with hydrazine of the type [M(N2H4)(H2O)(N3)Cl]n, [M(N2H4)(N3)2]n and [M(N2H4)2(N3)2]n have been prepared. These were characterized by elemental analyses, magnetic susceptibility measurements, electronic and IR spectra. The complexes are highly insoluble in polar and non polar solvents. All the complexes decompose with explosion at different temperatures between 100°C to 200°C. The magnetic moment and electronic spectral data for Co(II) and Ni(II) complexes suggest that the complexes have octahedral structure. The ligand-field parameters (10 Dq, B, β, β° and LFSE) have also been calculated for all Co(II) and Ni(II) complexes which indicate a significant covalent character of M-L bonds. The IR spectra of the complexes show that the azide group and hydrazine molecule both act as bidentate bridging ligands in [M(N2H4)(H2O)(N3)Cl]n and [M(N2H4)(N3)2]n type complexes but the azide group is terminally bonded to metal in all [M(N2H4)2(N3)2]n type complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号