首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The study of the metabolic fate of drugs is essential for the safety assessment of new compounds in the drug development process. However, the characterization and structural elucidation of metabolites from in vivo experiments is still a very challenging task. In this paper, we compare a two-dimensional liquid chromatography/mass spectrometry (LC/MS) approach using either a capillary LC/MS system or the recently introduced chip-based nanoelectrospray/MS system (Nanomate) as the second dimension for structural elucidation of metabolites by MS. More than 30 radioactive fractions of a chromatographic separation from a human urine sample were analyzed and 54 metabolites could be identified. The long persisting and stable nanoelectrospray enabled the search for unknown metabolites by precursor-ion scanning experiments followed by product-ion scanning experiments of potential metabolites using a quadrupole time-of-flight (qTOF) mass spectrometer. The number of fragments produced by nanoelectrospray with product-ion scanning was significantly higher compared to LC/MS experiments with in-source fragmentation. Therefore, the assignment of possible modifications in metabolites to certain moieties of the drug could be investigated with higher accuracy. The capillary LC/MS system for the second dimension was more sensitive in the case of low abundant metabolites. These metabolites could not be detected by direct nanoelectrospray infusion, which limits the application of the Nanomate for trace metabolites.  相似文献   

2.
Langmuir-Blodgett (LB) film of a hemicyanine derivative, (E)-N-hexadecyl-4-[2-(4-dimethylaminophenyl)ethenyl]pyridinium bromide (Hc) was fabricated. The Langmuir film of Hc exhibited good transfer behaviour. Optical second harmonic generation from the LB film was measured. Macroscopic second-order susceptibilily, molecular hyperpolarizability and tilt angle for the molecules on a substrate were estimated to be 7.06×10-6 esu, 6.47×10-27 esu,and 31.6° respectively.  相似文献   

3.
The catalytic and structural properties of the argE-encoded N-acetyl-L-ornithine deacetylase (ArgE) from Escherichia coli were investigated. On the basis of kinetic and ITC (isothermal titration calorimetry) data, Zn(II) binds to ArgE with Kd values that differ by approximately 20 times. Moreover, ArgE exhibits approximately 90% of its full catalytic activity upon addition of one metal ion. Therefore, ArgE behaves similarly to the aminopeptidase from Aeromonas proteolytica (AAP) in that one metal ion is the catalytic metal ion while the second likely plays a structural role. The N-acetyl-L-ornithine (NAO) deacetylase activity of ArgE showed a linear temperature dependence from 20 to 45 degrees C, indicating that the rate-limiting step does not change over this temperature range. The activation energy for NAO hydrolysis by ArgE was 25.6 kJ/mol when loaded with Zn(II) and 34.3 kJ/mol when loaded with Co(II). Electronic absorption and EPR (electron paramagnetic resonance) spectra of [Co x (ArgE)] and [CoCo(ArgE)] indicate that both divalent metal binding sites are five coordinate. In addition, EPR data show clear evidence of spin-spin coupling between the Co(II) ions in the active site but only after addition of a second equivalent of Co(II). Combination of these data provides the first physical evidence that the ArgE from E. coli contains a dinuclear Zn(II) active site, similar to AAP and the carboxypeptidase G2 from Pseudomonas sp. strain RS-16 (CPG2).  相似文献   

4.
The power of FRET to study molecular complexes is expanded by the use of two or more donor/acceptor pairs. A general theoretical framework for distance measurements in three-chromophore systems is presented. Three energy transfer schemes applicable to many diverse situations are considered: (I) two-step FRET relay with FRET between the first and second chromophores and between the second and third, (II) FRET from a single donor to two different acceptors, and (III) two-step FRET relay with FRET also between the first and third chromophores. Equations for the efficiencies involving multiple energy transfer steps are derived for both donor quenching and sensitized emission measurements. The theory is supported by experimental data on model systems of known structure using steady-state donor quenching, lifetime quenching, and sensitized emission. The distances measured in the three-chromophore systems agree with those in two-chromophore systems and molecular models. Finally, labeling requirements for diagnosis of the energy transfer scheme and subsequent distance measurements are discussed.  相似文献   

5.
Surface second harmonic generation (SHG) phase measurements are carried out on methyl ester-functionalized fused quartz/water interfaces in the presence and absence of Cr(VI). The experiments are performed at pH 7, room temperature, and a chromate concentration of 10(-4) M, which corresponds to monolayer Cr(VI) coverage. The liquid/solid interface is probed from the fused quartz side by directing the probe light field at 580 nm onto the interface together with an SHG reference signal at 290 nm that is collinear with the fundamental. The phase difference of the SHG signals generated at the interface in the presence and absence of Cr(VI) is 85 degrees, which is consistent with SHG resonance enhancement observed for the surface-bound Cr(VI) near 290 nm. The optical arrangement discussed here does not require vacuum technology or optics that compensate for the dispersion of the fundamental and the second harmonic E-fields in the two condensed-phase media. This approach is general and can be applied for analyzing thermodynamic and kinetic data derived from SHG measurements of physical and chemical processes occurring at any buried interface.  相似文献   

6.
The role of the second shell in the process of metal binding and selectivity in metalloproteins has been elucidated by combining Protein Data Bank (PDB) surveys of Mg, Mn, Ca, and Zn binding sites with density functional theory/continuum dielectric methods (DFT/CDM). Peptide backbone groups were found to be the most common second-shell ligand in Mg, Mn, Ca, and Zn binding sites, followed (in decreasing order) by Asp/Glu, Lys/Arg, Asn/Gln, and Ser/Thr side chains. Aromatic oxygen- or nitrogen-containing side chains (Tyr, His, and Trp) and sulfur-containing side chains (Cys and Met) are seldom found in the second coordination layer. The backbone and Asn/Gln side chain are ubiquitous in the metal second coordination layer as their carbonyl oxygen and amide hydrogen can act as a hydrogen-bond acceptor and donor, respectively, and can therefore partner practically every first-shell ligand. The second most common outer-shell ligand, Asp/Glu, predominantly hydrogen bonds to a metal-bound water or Zn-bound histidine and polarizes the H-O or H-N bond. In certain cases, a second-shell Asp/Glu could affect the protonation state of the metal ligand. It could also energetically stabilize a positively charged metal complex more than a neutral ligand such as the backbone and Asn/Gln side chain. As for the first shell, the second shell is predicted to contribute to the metal selectivity of the binding site by discriminating between metal cations of different ionic radii and coordination geometries. The first-shell-second-shell interaction energies decay rapidly with increasing solvent exposure of the metal binding site. They are less favorable but are of the same order of magnitude as compared to the respective metal-first-shell interaction energies. Altogether, the results indicate that the structure and properties of the second shell are dictated by those of the first layer. The outer shell is apparently designed to stabilize/protect the inner-shell and complement/enhance its properties.  相似文献   

7.
The retention behavior of a series of fat-soluble vitamins has been established on the basis of a polarity retention model: log k = (log k)(0) + p (P(m) (N) - P(s) (N)), with p being the polarity of the solute, P(m) (N) the mobile phase polarity, and (log k)(0) and P(m) (N) two parameters for the characterization of the stationary phase. To estimate the p-values of solutes, two approaches have been considered. The first one is based on the application of a QSPR model, derived from the molecular structure of solutes and their log P(o/w), while in the second one, the p-values are obtained from several experimental measurements. The quality of prediction of both approaches has also been evaluated, with the second one giving more accurate results for the most lipophilic vitamins. This model allows establishing the best conditions to separate and determine simultaneously some fat-soluble vitamins in dairy foods.  相似文献   

8.
The second harmonic generation (SHG) from the insoluble monolayers of bis-(N-ethyl, N-octadecyl)rhodamine perchlorate (RhC18) formed on the surface of sodium dodecylsulfate (SDS) solutions of different concentrations has been studied. An enhancement of the second harmonic response was observed in the mixed films of RhC18/SDS compared to the pure-dye layer. To clarify the origin of the phenomenon, the films were characterized by surface pressure-area isotherm and reflection-absorption spectroscopy studies. The analysis of surface pressure-area isotherms of RhC18/SDS layers showed that incorporated SDS molecules essentially influence the rheological properties of the dye monolayer. The film parameters, such as the molecular surface area, maximum surface pressure, and solid-condensed phase composition, are the functions of SDS bulk concentration. A joint analysis of the SHG results and the reflection-absorption spectra revealed that the structural ordering within films was responsible for the enhancement of the nonlinear optical response, whereas the contributions from the spectral shifts and increased absorption upon aggregate formation are of less importance.  相似文献   

9.
Isotropic and drawn tapes prepared from isotactic polypropylene (PP), low density polyethylene (LDPE) and their blend PP/LDPE (70/30) have been studied by broad‐line nuclear magnetic resonance (NMR) in the temperature range from 120 up to 320 K. The glass‐transition temperatures, Tg, for studied samples have been determined from the temperature dependencies of the NMR second moments. It was found that the NMR spectra and their second moments are additive for isotropic blend in the whole temperature range, while a significant differences from addition rule appear for drawn PP/LDPE blend, when weighted average second moment is calculated by means of second moments of equally drawn homopolymers. It was found out that the LDPE component in the blend is drawn to a greater extent than PP component.  相似文献   

10.
Abstract

Breakfast habits affect the nutritional status and health of people, in particular children and adolescents. This is the second part a previous study about the adherence to the Mediterranean diet in a Sicilian (Italy) student population. The investigation analysed both normal weight and overweight subjects in order to understand how eating habits, number of meals and daily calorie intakes could affect their body mass indexes (BMI). The aim of this second part was to analyse the breakfast nutritional profiles of this student population. The results highlighted that breakfast was regularly consumed by a percentage ranging from a maximum of 84% (in normal subjects) to a minimum value of 57.4% (in overweight/obese students). Milk, yoghurt, sugar, bread/rusk and tea contributed as main foods to the breakfast composition. The results highlighted that subjects who consumed breakfast showed lower BMI values with significant differences between normal and overweight/obese students.  相似文献   

11.
Mesomorphic phase transitions of 4'-n-alkoxy-3'-nitrobiphenyl-4-carboxylic acids (ANBC) with numbers of carbons (n) in the alkoxy group ranging from 11 to 22 have been studied by differential scanning calorimetry (DSC) and polarizing optical microscopy. The D phase, a mesophase of particular interest through its being optically isotropic, was observed for the n = 17, 19, 20, 21, and 22 members of the ANBCs, as well as for the n = 16 and 18 members, as reported previously. The Sc-D phase transition temperature decreased with increasing n, so that the temperature range of the D phase extended over 64° at n = 22. In the n = 15 member, the D phase was certainly observed on first heating, but was not seen on subsequent cooling and second heating processes.  相似文献   

12.
The transition metal rhodium has been proved the effective catalyst to convert from NO(x) to N(2.) In the present work, we are mainly focused on the NO adsorption and decomposition reaction mechanism on the surface of the Rh(7)(+) cluster, and the calculated results suggest that the reaction can proceed via three steps. First, the NO can adsorb on the surface of the Rh(7)(+) cluster; second, the NO decomposes to N and O atoms; finally, the N atom reacts with the second adsorbed NO and reduces to a N(2) molecule. The N-O bond breaks to yield N and O atoms in the second step, which is the rate-limiting step of the whole catalytic cycle. This step goes over a relatively high barrier (TS(12)) of 39.6 kcal/mol and is strongly driven by a large exothermicity of 55.1 kcal/mol during the formation of stable compound 3, accompanied by the N and O atoms dispersed on the different Rh atoms of the Rh(7)(+) cluster. In addition, the last step is very complex due to the different possibilities of reaction mechanism. On the basis of the calculations, in contrast to the reaction path II that generates N(2) from two nitrogen atoms coupling, the reaction path I for the formation of intermediate N(2)O is found to be energetically more favorable. Present work would provide some valuable fundamental insights into the behavior of the nitric oxide adsorption and reduction reaction mechanism on the Rh(7)(+) cluster.  相似文献   

13.
We present extensive molecular dynamics simulations of the motion of a single linear rigid molecule in a two-dimensional random array of fixed overlapping disklike obstacles. The diffusion constants for the center of mass translation, D(CM), and for rotation, D(R), are calculated for a wide range of the molecular length, L, and the density of obstacles, rho. The obtained results follow a master curve Drho(micro) approximately (L(2)rho)(-nu) with an exponent micro=-3/4 and 1/4 for D(R) and D(CM), respectively, that can be deduced from simple scaling and kinematic arguments. The nontrivial positive exponent nu shows an abrupt crossover at L(2)rho=zeta(1). For D(CM) we find a second crossover at L(2)rho=zeta(2). The values of zeta(1) and zeta(2) correspond to the average minor and major axis of the elliptic holes that characterize the random configuration of the obstacles. A violation of the Stokes-Einstein-Debye relation is observed for L(2)rho>zeta(1), in analogy with the phenomenon of enhanced translational diffusion observed in supercooled liquids close to the glass transition temperature.  相似文献   

14.
We present results from experiments and molecular modeling of mercury porosimetry into mesoporous Vycor and controlled pore glass (CPG) solid materials. The experimental intrusion/extrusion curves show a transition from a type H2 hysteresis for the Vycor glass to a type H1 hysteresis for the CPG. Mercury entrapment is observed in both materials, but we find that the amount of entrapped mercury depends on the chosen experimental relaxation time. No additional entrapment is found in a second intrusion/extrusion cycle, but hysteresis is still observed. This indicates that hysteresis and entrapment are of different origin. The experimental observations are qualitatively reproduced in theoretical calculations based on lattice models, which provide significant insights of the molecular mechanisms occurring during mercury porosimetry experiments in these porous glasses.  相似文献   

15.
The tetrahedral heteronuclear cluster complex (η5-C5H5)2W2Ir2(CO)10 reacts with N2CHCO2R (R = Et, Me) at room temperature to form the dicarbene species (η5-C5H5)2W2Ir2(CO)7(CHCO2R)2. An X-ray diffraction study (R = Et) shows an intact tetrahedral metal framework with two distinct sites for the CHCO2Et ligands. The first uses its carbon atom to bridge the Ir---Ir bond; the second uses its carbon atom to bridge an Ir---W bond and, additionally, forms a donor bond from a carbonyl oxygen atom to the second tungsten atom.  相似文献   

16.
A programmed synthesis of neoglycopeptides has been developed in which two, similar or different, glycoside moieties could be attached either (i) at the N-terminal of short peptides or (ii) one at the N-internal and the other(s) at the N-terminal site, in a highly flexible and controlled manner. A stepwise branching of N-terminal peptides has been achieved by glycoside aldehyde reductive amination followed by the glycoside carboxylic acid coupling (model 1). In another approach, after N-alkylation with glycoside aldehyde, the N-glycosylated derivative is subjected to peptide synthesis. This is then followed by the attachment of the second glycoside moiety at the N-terminal using either glycoside aldehyde or glycoside carboxylic acid derivative (model 2). Alternatively, the attachment of second and third glycoside derivatives could be achieved simultaneously, by reductive amination/carboxylic acid couplings (model 3). The methodologies presented here are highly versatile and combine diversity in both peptides/pseudopeptides and glycoside moieties.  相似文献   

17.
Furan was previously detected in foods that had undergone thermal treatment. Because furan is now classified as a possible human carcinogen, a model system was developed to investigate the origins of furan. Also, a simple, rapid isotope dilution (d4-furan) headspace method was developed to measure furan. Two pathways of furan formation have been identified in the model systems tested so far. The first is the oxidation of polyunsaturated fatty acids at elevated temperatures, and the second is linked to the decomposition of ascorbic acid derivatives. The analytical procedure, based on the use of a 50 microL injection (from the headspace of a 1.5 mL vial containing 0.5 mL water) into the split/splitless injection port of a gas chromatograph/mass spectrometer (electron ionization, selected-ion monitoring), showed linearity in the 10-1000 ng/g range with a limit of detection of 1 ng/g.  相似文献   

18.
《Liquid crystals》2001,28(11):1587-1595
Two series of new liquid crystalline compounds containing a non-activated arylazoindolinobenzospiropyran, ABP-SPAB 1a-1e (series 1) and SPAP-ABPC 2a-2e (series 2), have been synthesized. These LC dyes were characterized by a differential scanning calorimetry polarizing optical microscopy, X-ray diffraction and electro-optical measurements. All but one of the series 1 compounds examined exhibit monotropic second and/or third transition liquid crystal phases on cooling from the isotropic liquid. In particular, ABP-SPAB 1b shows a monotropic SmC phase, in addition to a SmA phase. In series 2, most of the compounds exhibit a monotropic nematic phase on cooling. SPAP-ABPC 2c forms an enantiotropic nematic phase and a monotropic SmA phase; 2e shows enantiotropic nematic and SmA phases.  相似文献   

19.
A photoactivatable ruthenium(II) carbonyl complex mer,cis-[Ru(II)Cl(BisQ)(CO)2]PF6 2 was prepared using a tridentate bisquinoline ligand (BisQ=(2,6-diquinolin-2-yl)pyridin). Compound 2 was thoroughly characterized by standard analytical methods and single crystal X-ray diffraction. The crystal structure of the complex cation reveals a distorted octahedral geometry. The decarbonylation upon exposure to 350 and 420 nm light was monitored by UV/VIS absorbance and Fourier transform infrared spectroscopies in acetonitrile and 1 % (v/v) DMSO in water, respectively. The kinetic of the photodecarbonylation has been elucidated by multivariate curve resolution alternating least-squares analysis. The stepwise decarbonylation follows a serial mechanism. The first decarbonylation occurs very quickly whereas the second decarbonylation step proceeds more slowly. Moreover, the second rate constant is lower in 1 % (v/v) DMSO in water than in acetonitrile. In comparison to 350 nm irradiation, exposure to 420 nm light in acetonitrile results in a lower second rate constant.  相似文献   

20.
A new method for determining aflatoxin M1 (AFM1) in cheese by liquid chromatography-tandem mass spectrometry has been developed. Two methodologies were compared for sample extraction. The first one involves sample extraction with dichloromethane for hard, aged cheese or acetone for fresh cheese and includes a preliminary matrix solid-phase dispersion-extraction step before solid-phase extraction (SPE) clean-up by a Carbograph-4 cartridge. The second method uses a water/methanol solution (90:10, v/v) extraction at 150 degrees C before clean-up. The average recoveries of AFM1 from samples spiked at levels of 0.25-0.45 microg/kg, were 81-92% and the precision (RSD) ranged from 3 to 7% with the first method, whilst the average recoveries were 79-84%, and RSD ranged from 7 to 15% for the second method. Due to different matrix effect, the quantification limits were 0.019-0.025 microg/kg in the first case and 0.048-0.143 microg/kg in the second one, depending on cheese typology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号