首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Aqueous solutions of a thermoresponsive amphiphilic diblock copolymer, containing poly(N-isopropylacrylamide), in the presence of the anionic sodium dodecyl sulfate (SDS) surfactant can undergo a temperature-induced transition from loose intermicellar clusters to collapsed core–shell nanostructures. The polymer–surfactant mixtures have been characterized with the aid of turbidity, small-angle neutron scattering (SANS), intensity light scattering (ILS), dynamic light scattering (DLS), shear viscosity, and rheo-small angle light scattering (rheo-SALS). In the absence of SDS, compressed intermicellar structures are formed at intermediate temperatures, and at higher temperatures further aggregation is detected. The SANS results disclose a structure peak in the scattered intensity profile at the highest measured temperature. This peak is ascribed to the formation of ordered structures (crystallites). In the presence of a low amount of SDS, a strong collapse of the intermicellar clusters is observed at moderate temperatures, and only a slight renewed interpolymer association is found at higher temperatures because of repulsive electrostatic interactions. Finally, at moderate surfactant concentrations, temperature-induced loose intermicellar clusters are detected but no shrinking was registered in the considered temperature range. At a high level of SDS addition, large polymer–surfactant complexes appear at low temperatures, and these species are compressed at elevated temperatures. The rheo-SALS results show that the transition structures are rather fragile under the influence of shear flow.  相似文献   

2.
The influence of shear flow on aggregation and disaggregation in aqueous solutions of the thermoresponsive methoxy-poly(ethylene glycol)-block-poly(N-isopropylacrylamide) (MPEG53-b-PNIPAAM113) copolymer that exhibits a lower critical solution temperature was investigated with the aid of turbidity, shear viscosity, and rheo small angle light scattering (rheo-SALS) methods. The turbidity results at quiescent conditions revealed a novel transition peak in the turbidity curve at intermediate temperatures, which reflects the delicate interplay between temperature-induced aggregation and shrinking of the species. A similar anomalous transition peak (located at the same temperature) was observed in the steady shear viscosity measurements at intermediate temperatures, and the amplitude of the peak was reduced with increasing shear rate as a consequence of breakup of interaggregate chains. At low temperatures (low sticking probability), enhanced shear rate generated interpolymer aggregates; whereas in the high-temperature domain (high sticking probability) association structures were broken up as the shear rate was increased. The rheo-SALS experiments disclosed growth of aggregates at low temperatures and destruction of association complexes at high temperatures. An increase of the cloud point temperature with rising shear rate is reported, which is interpreted as being a disruption of clusters under the influence of shear stresses.  相似文献   

3.
Dynamic light scattering (DLS), small-angle neutron scattering (SANS), and viscosity studies have been carried out to examine the influence of NaCl and ethanol on the structure of triblock copolymer [(EO)20(PO)70(EO)20] (EO = ethylene oxide; PO = propylene oxide) micelles in aqueous medium. The studies show that while the pure triblock copolymer solutions do not show any significant growth of the micelles on approaching the cloud point, the presence of a small amount of ethanol (5-10%) induces a sphere to rod shape transition of micelles at high temperatures. Interestingly, this ethanol induced sphere to rod transition of micelles can be brought down to room temperature (25 degrees C) with the addition of NaCl. It is also found that NaCl alone cannot induce such sphere to rod transitions and excess ethanol suppresses them by increasing their transition temperature.  相似文献   

4.
Structural changes at the intra‐ as well as intermicellar level were induced by the LCST‐type collapse transition of poly(N‐isopropyl acrylamide) in ABA triblock copolymer micelles in water. The distinct process kinetics was followed in situ and in real‐time using time‐resolved small‐angle neutron scattering (SANS), while a micellar solution of a triblock copolymer, consisting of two short deuterated polystyrene endblocks and a long thermoresponsive poly(N‐isopropyl acrylamide) middle block, was heated rapidly above its cloud point. A very fast collapse together with a multistep aggregation behavior is observed. The findings of the transition occurring at several size and time levels may have implications for the design and application of such thermoresponsive self‐assembled systems.  相似文献   

5.
Template synthesis of various morphological gold colloidal nanoparticles using a thermoresponsive and pH-responsive coordination triblock copolymer of poly(ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide) is studied. The template morphology of the thermoresponsive and pH-responsive coordination triblock copolymer, which can be tuned by simply changing the pH or temperature of the triblock copolymer aqueous solution, ranges from single chains to core-corona micelles and further to micellar clusters. Various morphological gold colloidal nanoparticles such as discrete gold nanoparticles, gold@polymer core-shell nanoparticles, and gold nanoparticle clusters are synthesized on the corresponding template of the triblock copolymer by first coordination with gold ions and then reduction by NaBH4. All three resultant gold colloidal nanoparticles are stable in aqueous solution, and their sizes are 2, 10, and 7 nm, respectively. The gold@polymer core-shell nanoparticles are thermoresponsive. The gold nanoparticle cluster has a novel structure, and each one holds about 40 single gold nanoparticles.  相似文献   

6.
The heating-induced micellization of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (Pluronic PE10300) triblock copolymer chains was studied by ultrasensitive differential scanning calorimetry, laser light scattering, and fluorescence spectrometry with a fluorescent probe, 8-anilino-1-naphthalenesulfonic acid ammonium salt. The critical micellization temperatures obtained from the three methods are similar. The micellization kinetics was studied in terms of changes in the fluorescence and Rayleigh scattering intensities after an ultrafast infrared heating laser pulse (approximately 10 ns)-induced temperature jump. The increases in the fluorescence and Rayleigh scattering intensities in the millisecond range can be well described by a single-exponential equation, corresponding to the incorporation of individual triblock copolymer chains (unimers) into large spherical micelles. The increase in copolymer concentration or the initial solution temperature decreases the characteristic transition time. In general, the fluorescence measurement has a better signal-to-noise ratio but leads to a transition time that is slightly shorter than that from the corresponding Rayleigh scattering measurement for a given copolymer solution.  相似文献   

7.
Amphiphilic diblock and triblock copolymers of various block compositions based on hydrophilic poly(2‐ethyl‐2‐oxazoline) (PEtOz) and hydrophobic poly(ε‐caprolactone) were synthesized. The micelle formation of these block copolymers in aqueous media was confirmed by a fluorescence technique and dynamic light scattering. The critical micelle concentrations ranged from 35.5 to 4.6 mg/L for diblock copolymers and 4.7 to 9.0 mg/L for triblock copolymers, depending on the block composition. The phase‐transition behaviors of the block copolymers in concentrated aqueous solutions were investigated. When the temperature was increased, aqueous solutions of diblock and triblock copolymers exhibited gel–sol transition and precipitation, both of which were thermally reversible. The gel–sol transition‐ and precipitation temperatures were manipulated by adjustment of the block composition. As the hydrophobic portion of block copolymers became higher, a larger gel region was generated. In the presence of sodium chloride, the phase transitions were shifted to a lower temperature level. Sodium thiocyanate displaced the gel region and precipitation temperatures to a higher temperature level. The low molecular weight saccharides, such as glucose and maltose, contributed to the shift of phase‐transition temperatures to a lower temperature level, where glucose was more effective than maltose in lowering the gel–sol transition temperatures. The malonic acid that formed hydrogen bonds with the PEtOz shell of micelles was effective in lowering phase‐transition temperatures to 1.0M, above which concentration the block copolymer solutions formed complex precipitates. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2400–2408, 2000  相似文献   

8.
A series of gradient copolymers of methacrylic acid (MAA)/methyl methacrylate (MMA) with four end-to-end composition profiles (uniform, linear gradient, triblock with linear gradient midblock, and diblock) but all having an average chain composition of ?F(MMA) ≈ 0.5 and an average chain length of 200 were synthesized via model-based, computer-programmed, semibatch atom-transfer radical copolymerization (ATRcoP). These samples allowed us to investigate systematically the effects of the gradient composition profile on the pH responsivity and micelle formation of the copolymers in an aqueous solution. Measurements included light transmittance, TEM, AFM, DLS, (1)H NMR, and pH titration. It was found that linear gradient, triblock, and diblock copolymers formed spherical micelles at high pH. The micelles of the linear gradient copolymer contained MMA units in their hydrophilic shells, and those of the triblock and diblock copolymers had all of their MMA units residing in their cores. The composition profile showed a strong effect on the degree of acid dissociation at a given pH. The conformational transition of the copolymer chains was determined by both the pH value and composition profile. Copolymers having sharper gradients required a lower pH to trigger the conformational transition and a narrower pH range to complete the transition.  相似文献   

9.
A unique diblock copolymer ring and its linear triblock copolymer precursor composed of polystyrene and polydimethylsiloxane have been characterized by static and dynamic light scattering in dilute solution. The measurements were carried out with cyclohexane as the solvent over a temperature range of 12–35°C. Cyclohexane has the useful property that it is nearly isorefractive with the PDMS so that the PDMS block segments are invisible to the light-scattering technique and it is a theta solvent for polystyrene at 34.5°C. The block polymers in this work contain 35.1 wt % of styrene as determined by proton NMR. In the linear triblock polymer, the polystyrene is the center block with PDMS blocks on each side. Static light scattering measurements give 4.31 × 104 for the average molecular weight of the whole polymer. Light scattering also shows that the apparent theta temperature for the linear triblock is shifted by 15°C to a value of 20°C at which point the second virial coefficient drops sharply and phase separation begins to induce aggregation. The diblock ring, however, shows a strongly positive second virial coefficient and no aggregation even at 12°C which is the limit of these experiments. The diffusion coefficients of cyclic diblock (Dc) and linear triblock copolymer (D1) are measured by dynamic light scattering. The ratio of diffusion coefficients of cyclic and linear copolymers at 14.9°C and 30°C are Dc/Dl = 1.13 and 1.107 respectively. These compare well with prediction of 1.18 for this ratio from consideration of the hydrodynamics of matched linear and cyclic polymer chains. Dynamic light scattering quantitatively confirms that the linear copolymer experiences a solvent quality change near 20°C but the cyclic polymer remains in good solvent over the entire experimental temperature range. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The paper provides new insights into the structure of Pt-containing diblock and triblock copolymers based on poly(ethylene oxide) (PEO) and poly(4-vinylpyridine) (P4VP), using a combination of atomic force microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and anomalous small-angle X-ray scattering (ASAXS). Parallel studies using methods contributing supplemental structural information allowed us to comprehensively characterize sophisticated polymer systems during metalation and to exclude possible ambiguity of the data interpretation of each of the methods. AFM and TEM make available the determination of sizes of the micelles and of the Pt-containing micelle cores, respectively, while a combination of XRD, TEM, and ASAXS reveals Pt-nanoparticle size distributions and locations along with the structural information about the polymer matrix. In addition, for the first time, ASAXS revealed the organization of Pt-nanoparticle-filled diblock and triblock copolymers in the bulk. The nanoparticle characteristics are mainly determined by the type of block copolymer system in which they are found: larger particles (2.0-3.0 nm) are formed in triblock copolymer micelles, while smaller ones (1.5-2.5 nm) are found in diblock copolymer micelles. This can be explained by facilitated intermicellar exchange in triblock copolymer systems. For both systems, Pt nanoparticles have narrow particle size distributions as a result of a strong interaction between the nanoparticle surface and the P4VP units inside the micelle cores. The pH of the medium mainly influences the particle location rather than the particle size. A structural model of Pt-nanoparticle clustering in the diblock PEO-b-P4VP and triblock P4VP-b-PEO-b-P4VP copolymers in the bulk was constructed ab initio from the ASAXS data. This model reveals that nearly spherical micellar cores of about 10 nm in diameter (filled with Pt nanoparticles) aggregate forming slightly oblate hollow bodies with an outer diameter of about 40 nm.  相似文献   

11.
The formation of soluble hydrogen-bonding interpolymer complexes between poly(acrylic acid) (PAA) and poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)-graft-poly(N,N-dimethylacrylamide) (P(AA-co-AMPSA)-g-PDMAM) at pH=2.0 was studied. A viscometric study showed that in semidilute solution a physical gel is formed due to the interconnection of the anionic P(AA-co-AMPSA) backbone of the graft copolymer, in a transient network, by means of the complexes formed between the PDMAM side chains of the graft copolymer and PAA. Dynamic and static light scattering measurements, in conjunction with small-angle neutron scattering measurements, suggest the formation of core-shell colloidal nanoparticles in dilute solution, comprised by an insoluble PAA/PDMAM core surrounded by an anionic P(AA-co-AMPSA) corona. Even if larger clusters are formed in semidilute solution, the size of the insoluble core remains practically stable. Atomic force microscopy performed under ambient conditions reveal that the particles collapse and flatten upon deposition on a substrate, with dimensions close to the ones of the dry hydrophobic core.  相似文献   

12.
 The self-diffusion behavior of a triblock copolymer (PEO–b– PPO–b–PEO) in an aqueous solution of 20% (m/m) was investigated during a temperature-induced phase transition from liquid to gel state using pulsed field gradient NMR and static light scattering. The measured self-diffusivity shows a strong dependence on the observation time in the gel phase indicating the existence of diffusion barriers in the size range of about 0.6 μm. Additional static light-scattering measurements show a structure in the same size range of several hundred nanometers, which is far above molecular or micellar sizes and thus, has to be caused by larger clusters. The similarity in the space scales suggests that the restriction of molecular propagation is correlated with the grain boundaries between the domains of the poly-crystalline structure formed by the arranged micelles. Received: 28 October 1996 Accepted: 21 March 1997  相似文献   

13.
Solution properties of polystyrene-poly(methyl methacrylate) (PS-PMMA) diblock copolymer, polystyrene-poly(tertiobutyl methacrylate) (PS-PtBuMA) diblock copolymer, and poly(ethylene oxide)-polystyrene-poly(ethylene oxide) (PEO-PS-PEO) triblock copolymer have been measured by viscometry. The PEO-PS-PEO copolymer has been studied also in solid state by differential scanning calorimetry and by optical microscopy. All the block copolymers present a conformational transition in solution at a given temperature region which is relatively narrow. If below this transition temperature a copolymer adopts a segregated conformation (dumb-bell model), above this transition adopts a nonsegregated or pseudo-gaussian conformation, and vice versa. In the transition temperature region the copolymer adopts a compressed segregated conformation (core and shell model). If the passage from the solution to the solid state is performed in a given constant temperature in which the copolymer presents a segregated or nonsegregated conformation the same conformation is observed in the solid state (memory effect). © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Triblock copolymers could form supramolecules in either polar or nonpolar solvents at appropriate concentration and temperature ranges or in the presence of additives. The association properties and the structure of supramolecules of PEO-PPO-PEO and PPO-PEO-PPO (PEO and PPO refer to poly(oxyethylene) and poly(oxypropylene), respectively) triblock copolymers in xylene and/or water were investigated by using light scattering, small-angle neutron scattering, and small-angle X-ray scattering. The association process of aqueous solution or water-rich ternary systems was entropy driven and temperature played an important role. The additive, e.g., water in the oil-rich ternary system, played a very important role on the micellization of PEO-PPO-PEO, e.g., Pluronic L64, in xylene. The micelles had a core-shell structure and the micellar shell was rather heavily solvated. At high copolymer concentrations, large aggregates with a lamellar structure was formed and the amount of large aggregates increased with increasing copolymer concentration before gel formation.  相似文献   

15.
A thermoresponsive diblock copolymer, poly(ethyl glycidyl ether)-block-poly(ethylene oxide) (PEGE-b-PEO), is synthesized by successive anionic ring-opening polymerization of ethyl glycidyl ether and ethylene oxide using 2-phenoxyethanol as a starting material, and its solution behavior is elucidated in water. In a dilute 1 wt % solution, the temperature-dependent alteration in the polymer hydrodynamic radius (RH) is measured in the temperature range between 5 and 45 degrees C by pulse-gradient spin-echo NMR and dynamic light scattering. The RH value increased with temperature in two steps, where the first step at 15 degrees C corresponds to the core-shell micelle formation and the second step at 40 degrees C corresponds to the aggregation of the core-shell micelles. The formation of the core-shell micelles is supported by the solubilization of a dye (1,6-diphenyl-1,3,5-hexatriene) in the hydrophobic core, which is recognized for a copolymer solution in the temperature range between 20 and 40 degrees C. In this temperature range, the core-shell micelles and the unimers coexist and the fraction of the former gradually increases with increasing temperature, suggesting equilibrium between the micelles and the unimers. In the concentrated regime (40 wt % solution), the solution forms a gel and the small-angle X-ray scattering measurements reveal the successive formation of hexagonal and lamellar liquid crystal phases with increasing temperature.  相似文献   

16.
We investigated the phase behavior and the microscopic structure of the colloidal complexes constituted from neutral/polyelectrolyte diblock copolymers and oppositely charged surfactant by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The neutral block is poly(N-isopropylacrylamide) (PNIPAM), and the polyelectrolyte block is negatively charged poly(acrylic acid) (PAA). In aqueous solution with neutral pH, PAA behaves as a weak polyelectrolyte, whereas PNIPAM is neutral and in good-solvent condition at ambient temperature, but in poor-solvent condition above approximately 32 degrees C. This block copolymer, PNIPAM-b-PAA with a narrow polydispersity, is studied in aqueous solution with an anionic surfactant, dodecyltrimethylammonium bromide (DTAB). For a low surfactant-to-polymer charge ratio Z lower than the critical value ZC, the colloidal complexes are single DTAB micelles dressed by a few PNIPAM-b-PAA. Above ZC, the colloidal complexes form a core-shell microstructure. The core of the complex consists of densely packed DTA+ micelles, most likely connected between them by PAA blocks. The intermicellar distance of the DTA+ micelles is approximately 39 A, which is independent of the charge ratio Z as well as the temperature. The corona of the complex is constituted from the thermosensitive PNIPAM. At lower temperature the macroscopic phase separation is hindered by the swollen PNIPAM chains. Above the critical temperature TC, the PNIPAM corona collapses leading to hydrophobic aggregates of the colloidal complexes.  相似文献   

17.
Poly(isoprene)-block-poly(ethylene oxide) (PI-b-PEO) diblock copolymers form micelles in water. The introduction of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) triblock copolymer leads to the formation of mixed micelles through hydrophobic interaction. The dimension of the mixed micelles varies with the weight ratio (r) of PEO-b-PPO-b-PEO to PI-b-PEO. By use of laser light scattering, we have investigated the temperature dependence of the structural evolution of the micelles at different r. At r<10, the size of the mixed micelles decreases with temperature. At r>10, due to the excessive PEO-b-PPO-b-PEO chains in solution, as temperature increases, the mixed micelles aggregate into larger micelle clusters.  相似文献   

18.
Jing  Xian-Wu  Huang  Zhi-Yu  Lu  Hong-Sheng  Wang  Bao-Gang 《高分子科学》2018,36(1):18-24
A series of triblock copolymers,containing a CO2-switchable block poly(2-(dimethylamino)ethyl methacrylate) (PDM) block and two symmetrical hydrophilic blocks polyacrylamide (PAM),were synthesized using atom transfer radical polymerization (ATRP) method.The pH and conductivity tests showed that the triblock copolymer exhibited switchable responsiveness to CO2,i.e.a relatively low conductivity of solution could be switched on and off by bubbling and removing of CO2,and the triblock copolymer aqueous solution displayed a CO2-switchable viscosity variation.The changes were all attributed to protonation of tertiary amine groups in PDM blocks and proven by 1H-NMR.Cryogenic transmission electron microscopy and dynamic light scattering characterization demonstrated that the viscosity variation was the result of a unilamellar vesicle-network aggregate structure transition.The release of rhodamine B from the vesicles with and without CO2 stimuli showed the potential application in drug delivery domains;after CO2 bubbling,the drug release rate could be accelerated.Finally,reasonable mechanism of CO2-switchable morphology changes and CO2-induced drug release was proposed.  相似文献   

19.
通过大分子引发剂引发ε-苄氧羰基-L-赖氨酸-N-羧酸酐(Lys-NCA)开环聚合和大分子缩合的方法合成了聚(N-异丙基丙烯酰胺)-b-聚(ε-苄氧羰基-L-赖氨酸)-b-聚乙二醇单甲醚三嵌段共聚物(PNIPAM-b-PZLL-b-mPEG).用GPC和1H-NMR对其结构进行了表征.用芘荧光探针法证明了该三嵌段聚合物形成胶束的性质并测定了临界胶束浓度(CMC).动态光散射(DLS)研究表明,在固定PNIPAM-b-PZLL链段长度的情况下,mPEG分子量为2000时,胶束在温度高于临界溶解温度(LCST)时发生聚集,mPEG分子量为5000时,胶束在LCST以上没有发生聚集.  相似文献   

20.
ABA triblock copolymers in solvents selective for the midblock are known to form associative micellar gels. We have modified the structure and rheology of ABA triblock copolymer gels comprising poly(lactide)-poly(ethylene oxide)-poly(lactide) (PLA-PEO-PLA) through addition of a clay nanoparticle, laponite. Addition of laponite particles resulted in additional junction points in the gel via adsorption of the PEO corona chains onto the clay surfaces. Rheological measurements showed that this strategy led to a significant enhancement of the gel elastic modulus with small amounts of nanoparticles. Further characterization using small-angle X-ray scattering and dynamic light scattering confirmed that nanoparticles increase the intermicellar attraction and result in aggregation of PLA-PEO-PLA micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号