首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用简单、新颖的沸石粒子引入方法,将NaX沸石晶种引入不锈钢微反应器的微通道内,并用流动法"就地"直接在微通道内通过沸石生长形成NaX沸石膜层,经铯离子交换处理成为CsNaX催化层,用苯甲醛和氰基乙酸乙酯的Knoevenagel缩合反应评价了该催化层的催化性能.结果表明,微通道内形成的沸石膜层连续,均匀,具有良好的催化功能.微反应器内缩合反应的结果明显优于传统反应器.  相似文献   

2.
Liu AL  Zhou T  He FY  Xu JJ  Lu Y  Chen HY  Xia XH 《Lab on a chip》2006,6(6):811-818
We firstly transformed the traditional Michaelis-Menten equation into an off-line form which can be used for evaluating the Michaelis-Menten constant after the enzymatic reaction. For experimental estimation of the kinetics of enzymatic reactions, we have developed a facile and effective method by integrating an enzyme microreactor into direct-printing polymer microchips. Strong nonspecific adsorption of proteins was utilized to effectively immobilize enzymes onto the microchannel wall, forming the integrated on-column enzyme microreactor in a microchip. The properties of the integrated enzyme microreactor were evaluated by using the enzymatic reaction of glucose oxidase (GOx) with its substrate glucose as a model system. The reaction product, hydrogen peroxide, was electrochemically (EC) analyzed using a Pt microelectrode. The data for enzyme kinetics using our off-line form of the Michaelis-Menten equation was obtained (K(m) = 2.64 mM), which is much smaller than that reported in solution (K(m) = 6.0 mM). Due to the hydrophobic property and the native mesoscopic structure of the poly(ethylene terephthalate) film, the immobilized enzyme in the microreactor shows good stability and bioactivity under the flowing conditions.  相似文献   

3.
Lv Y  Zhang Z  Chen F 《The Analyst》2002,127(9):1176-1179
A chemiluminescence biosensor on a chip coupled to a microfluidic system and a microreactor is described in this paper. The chemiluminescence biosensor measured 25 x 75 x 6.5 mm in dimension, and was readily produced in an analytical laboratory. The sol-gel method is introduced to co-immobilize horseradish peroxidase (HRP) and luminol in the microreactor, and to immobilize uricase in the enzymatic reactor. The main characteristic of the biosensor was to introduce air as the carrier flow instead of the more common solution carrier for the first time. The uric acid was determined by a chemiluminescent (CL) reaction between the hydrogen peroxide produced from the enzymatic reactor and luminol under the catalysis of HRP in the microreactor. The linear range of the uric acid concentration was 1 to 100 mg L(-1) and the detection limit was 0.1 mg L(-1) (3sigma).  相似文献   

4.
Chen Y  Wu M  Wang K  Chen B  Yao S  Zou H  Nie L 《Journal of chromatography. A》2011,1218(44):7982-7988
A novel thiol-ene "click" strategy for the preparation of monolithic trypsin microreactor was proposed. The hybrid organic-inorganic monolithic capillary column with ene-functionality was fabricated by sol-gel process using tetramethoxysilane (TMOS) and γ-methacryloxypropyltrimethoxysilane (γ-MAPS) as precursors. The disulfide bonds of trypsin were reduced to form free thiol groups. Then the trypsin containing free thiol groups was attached on the γ-MAPS hybrid monolithic column with ene-functionality via thiol-ene click chemistry to form a trypsin microreactor. The activity of the trypsin microreactor was characterized by detecting the substrate (Nα-p-tosyl-L-arginine methyl ester hydrochloride, TAME) and the product (Nα-p-tosyl-L-arginine, TA) with on-line capillary zone electrophoresis. After investigating various synthesizing conditions, it was found that the microreactor with poly(N,N'-methylenebisacrylamide) as spacer can deliver the highest activity, yielding a rapid reaction rate. After repeatedly sampling and analyzing for 100 times, the monolithic trypsin microreactor still remained 87.5% of its initial activity. It was demonstrated that thiol-ene "click" strategy for the construction of enzyme microreactor is a promising method for the highly selective immobilization of proteins under mild conditions, especially enzymes with free thiol radicals.  相似文献   

5.
A flow microreactor system consisting of micromixers and microtubes provides an effective reactor for the generation and reactions of aryloxiranyllithiums without decomposition by virtue of short residence time and efficient temperature control. The deprotonation of styrene oxides with sBuLi can be conducted by using the flow microreactor system at -78 or -68 °C (whereas much lower temperatures (< -100 °C) are needed for the same reactions conducted under macrobatch conditions). The resulting α-aryloxiranyllithiums were allowed to react with electrophiles in the flow microreactor system at the same temperature. The sequential introduction of various electrophiles onto 2,3-diphenyloxiranes was also achieved by using an integrated flow microreactor, which serves as a powerful system for the stereoselective synthesis of tetrasubstituted epoxides.  相似文献   

6.
Kuhn S  Noël T  Gu L  Heider PL  Jensen KF 《Lab on a chip》2011,11(15):2488-2492
We present a general inexpensive method for realizing a Teflon stack microreactor with an integrated piezoelectric actuator for conducting chemical synthesis with solid products. The microreactors are demonstrated with palladium-catalyzed C-N cross-coupling reactions, which are prone to clogging microchannels by forming insoluble salts as by-products. Investigations of the ultrasonic waveform applied by the piezoelectric actuator reveal an optimal value of 50 kHz at a load power of 30 W. Operating the system at these conditions, the newly developed Teflon microreactor handles the insoluble solids formed and no clogging is observed. The investigated reactions reach full conversion in very short reaction times and high isolated yields are obtained (>95% yield).  相似文献   

7.
Well-defined diblock copolymers were synthesized via an exothermic RAFT route by a droplet microfluidic process using a solvent-resistant and thermally stable fluoropolymer microreactor fabricated by a non-lithographic embedded template method. The resulting polymers were compared to products obtained from continuous flow capillary reactor and conventional bulk synthesis. The droplet based microreactor demonstrated superior molecular weight distribution control by synthesizing a higher molecular weight product with higher conversion and narrow polydispersity in a much shorter reaction time. The high quality of the as-synthesized block copolymer PMMA-b-PS led to a generation of micelles with a narrow size distribution that could be used as a template for well-ordered mesoporous silica with regular frameworks and high surface areas.  相似文献   

8.
Peptide mapping analysis, utilizing an easily replaceable and regenerable on-column enzymatic microreactor with metal-ion-chelated adsorption of enzyme on magnetic silica microspheres, combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), was developed. Firstly, magnetic microspheres of small size and strong magnetism were prepared through solvothermal reaction. Thereafter, by introducing tetraethyl orthosilicate (TEOS), magnetic silica (MS) microspheres were formed. Trypsin could then be immobilized onto the MS microspheres based on the Lewis acid-base interaction through the divalent cation chelators such as iminodiacetic acid (IDA), which was chemically bound to the microspheres through the introduction of glycidoxypropyltrimethoxysilane (GLYMO). The trypsin-immobilized MS microspheres were then locally packed into the capillary by the application of a strong magnetic field using a magnet. The performance of the method was exemplified with digestion of bovine serum albumin for 5 min at 50 degrees C and the result was comparable to the 12 h in-solution digestion. The ability of regeneration of the prepared on-column microreactor and good reproducibility of microreactor before and after regeneration were also demonstrated.  相似文献   

9.
Microdroplet chemistry is attracting increasing attention for accelerated reactions at the solution–air interface. We report herein a voltage-controlled interfacial microreactor that enables acceleration of electrochemical reactions which are not observed in bulk or conventional electrochemical cells. The microreactor is formed at the interface of the Taylor cone in an electrospray emitter with a large orifice, thus allowing continuous contact of the electrode and the reactants at/near the interface. As a proof-of-concept, electrooxidative C−H/N−H coupling and electrooxidation of benzyl alcohol were shown to be accelerated by more than an order of magnitude as compared to the corresponding bulk reactions. The new electrochemical microreactor has unique features that allow i) voltage-controlled acceleration of electrochemical reactions by voltage-dependent formation of the interfacial microreactor; ii) “reversible” electrochemical derivatization; and iii) in situ mechanistic study and capture of key radical intermediates when coupled with mass spectrometry.  相似文献   

10.
Photocatalysis offers a credible and prompt approach to solving the growing problems of environmental pollution and energy shortages. However, the practical application of photocatalytic materials still faces the challenge of the efficient catalytic system without secondary recovery. Herein, hollow Fe2O3 microspheres with uniform size (polydispersity index = 0.067) were synthesized using an innovative microgel template–assisted solvothermal method with high yield. Via direct writing three-dimensional printing, the as-prepared Fe2O3 microspheres and graphene oxide were fabricated into an ultralight, stable, and high-performance aerogel microreactor, achieving wastewater treatment without catalyst recovery. Photocatalytic degradation efficiency of rhodamine B achieved 97.8% by the microreactor under simulated sunlight irradiation for 120 min. The rich porous structures and highly interconnected networks of the microreactor provide high specific surface area and increased numbers of multidimensional mass transfer channels, further enabling the catalytic performance and reusability for photocatalytic degradation.  相似文献   

11.
Phase-transfer alkylation in a microreactor proceeds smoothly, and the reaction has been found to be more efficient than that in a round-bottomed flask with vigorous stirring; we have observed by an optical microscope study that an interfacial area provided by organic and aqueous phases is more extended in a microreactor.  相似文献   

12.
Fox M  Esveld E  Luttge R  Boom R 《Lab on a chip》2005,5(9):943-948
This paper presents a new microreactor dedicated for pulsed electric field treatment (PEF), which is a pasteurization method that inactivates microorganisms with short electric pulses. The PEF microreactor consists of a flow-through channel with a constriction where the electric field is focussed. Compared to a laboratory-scale setup 25 times lower voltages were needed to obtain the same electric field strength due to the close electrode spacing. A finite element model showed that the electric field intensity is very homogeneous throughout the channel, which is crucial for the pasteurization processes. Experiments where artificial vesicles, loaded with carboxyfluorescein, were electroporated showed that the maximum transmembrane potential adequately described the processes both in the microreactor and the laboratory-scale setup, although the length scales are different. Electroporation started at a transmembrane potential of 0.5 V, reaching a maximum fraction of electroporated vesicles of 51% at a transmembrane potential of 1.5 V. The partial electroporation is not a result of the heterogenity of the vesicles or the electric field. With this new PEF microreactor it is possible to study the PEF process in more detail.  相似文献   

13.
A microreactor array was developed which enables high-throughput cell-free protein synthesis. The microreactor array is composed of a temperature control chip and a reaction chamber chip. The temperature control chip is a glass-made chip on which temperature control devices, heaters and temperature sensors, are fabricated with an ITO (indium tin oxide) resistive material. The reaction chamber chip is fabricated by micromolding of PDMS (polydimethylsiloxane), and is designed to have an array of reaction chambers and flow channels for liquid introduction. The microreactor array is assembled by placing the reaction chamber chip on the temperature control chip. The small thermal mass of the reaction chamber resulted in a short thermal time constant of 170 ms for heating and 3 s for cooling. The performance of the microreactor array was examined through the experiments of cell-free protein synthesis. By measuring the fluorescence emission from the products, it was confirmed that GFP (Green Fluorescent Protein) and BFP (Blue Fluorescent Protein) were successfully synthesized using Escherichia coli extract.  相似文献   

14.
The influence of the reactants mixing in an impinging jets microreactor of the formation of singlephase nanocrystals of bismuth orthoferrite has been studied. The 30–100 nm amorphous particles are formed under the impinging jets microreactor conditions, which are converted in bismuth orthoferrite with mean crystallite size 17 nm at 420°С.  相似文献   

15.
We found that a flow microreactor system enables the generation of a configurationally unstable chiral organolithium intermediate and allows for its use in a reaction with an electrophile before it epimerizes. Based on this method, the enantioselective carbolithiation of conjugated enynes followed by the reaction with electrophiles was accomplished to obtain enantioenriched chiral allenes.  相似文献   

16.
Clariant, as an important pigment producer forces the investigation of new pigments with improved qualities and properties to fulfill the rising tomorrow's demands of customers. For these reasons, new production ways like microreaction technology are included. This paper focuses on results obtained in manufacturing pigments in a lab-scale microreactor as well as in a microreactor pilot plant. Investigations of the diazotation, azo-coupling and laking steps of pigments have shown not only the principle feasibility of these reactions in laboratory microreactors but also significant improvement of coloristic properties. The microreactor pilot plant, realized by the concept of numbering-up instead of conventional scaling-up process, allowed more detailed investigations of the complete azo-pigments synthesis under production conditions.  相似文献   

17.
The paper reports on a preliminary study into the coupling of a microreactor to a GC-FID, using a standard GC needle as the interface between the microreactor and the injection port of a conventional GC. Using the injection needle as the ground electrode, electroosmotic flow was used to control the injection of reagent/sample into the GC. Photolithographic and wet etching techniques were used to fabricate the microreactor (channels 200 microns id, 100 microns deep) in a borosilicate glass substrate. The results of the effects of voltage and injection times on the response signal are presented. The critical obstacles to overcome were the backpressure posed by the carrier gas disrupting the liquid flow in the channels and reservoirs of the microreactor and the need to thermally insulate the microreactor, to prevent evaporation of solvent and reagents from the device.  相似文献   

18.
Park CP  Maurya RA  Lee JH  Kim DP 《Lab on a chip》2011,11(11):1941-1945
A transparent dual-channel microreactor with highly enhanced contact area-to-volume ratio was fabricated for efficient photosensitized oxygenations. The dual-channel microreactor shielded with polyvinylsilazane (PVSZ) consisting of an upper channel for liquid flow and a lower channel for O(2) flow, allows sufficient phase contact along the parallel channels through a gas permeable PDMS membrane for maintaining the O(2) saturated solution. Under full exposure of reactants to light, the reactions in high concentration are completed in minutes rather than hours that it takes to complete in a batch reactor. Moreover, the scale-up process using the microreactor revealed higher productivity than the batch reactor, which would be valuable for the practical applications in a broad range of gas-liquid chemical reactions.  相似文献   

19.
Modelling of the amperometric biosensors based on carbon paste electrodes encrusted with a single heterogeneous microreactor is analyzed. The microreactor was constructed from CPCsilica carrier and was loaded with glucose oxidase. The model is based on nonstationary diffusion–reaction equations containing a nonlinear term related to the enzymatic reaction. A homogenization process having an effective algorithm for the digital modelling of the operation of the microreactor is proposed. The influence of the size, geometrical form, and the position of a microreactor on the operation of biosensors are investigated.  相似文献   

20.
设计了两步微反应器,对影响反应的几何参数进行了优化。对于微反应器的混合单元,设计了内肋型障碍物结构,用于产生混沌对流,促进样品混合。利用基于有限元原理的数值模拟软件分别对混合单元的障碍物与微通道的高宽比、障碍物宽度与间距的比值和障碍物的宽度进行设计与优化。采用蜿蜒通道作为微反应器的反应单元,研究了反应单元长度、反应时间与初始浓度对反应的影响。以葡萄糖氧化反应为例,设计了一个两步微反应器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号