首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The identification of front vowels was studied in normal-hearing listeners using stimuli whose spectra had been altered to approximate the spectrum of vowels processed by auditory filters similar to those that might accompany sensorineural hearing loss. In the first experiment, front vowels were identified with greater than 95% accuracy when the first formant was specified in a normal manner and the higher frequency formants were represented by a broad, flat spectral plateau ranging from approximately 1600 to 3500 Hz. In the second experiment, the bandwidth of the first formant was systematically widened for stimuli with already flattened higher frequency formants. Normal vowel identification was preserved until the first formant was widened to six times its normal bandwidth. These results may account for the coexistence of abnormal vowel masking patterns (indicating flattened auditory spectra) and normal vowel recognition.  相似文献   

2.
Acoustic parameters were measured for vowels spoken in /hVd/ context by four postlingually deafened recipients of multichannel (Ineraid) cochlear implants. Three of the subjects became totally deaf in adulthood after varying periods of partial hearing loss; the fourth became totally deaf at age four. The subjects received different degrees of perceptual benefit from the prosthesis. Recordings were made before, and at intervals following speech processor activation. The measured parameters included F1, F2, F0, SPL, duration, and amplitude difference between the first two harmonic peaks in the log magnitude spectrum (H 1-H2). Numerous changes in parameter values were observed from pre- to post-implant, with differences among subjects. Many changes, but not all, were in the direction of normative data, and most changes were consistent with hypotheses about relations among the parameters. Some of the changes tended to enhance phonemic contrasts; others had the opposite effect. For three subjects, H 1-H2 changed in a direction consistent with measurements of their average air flow when reading; that relation was more complex for the fourth subject. The results are interpreted with respect to: characteristics of the individual subjects, including vowel identification scores; mechanical interactions among glottal and supraglottal articulations; and hypotheses about the role of auditory feedback in the control of speech production. Almost all the observed differences could be attributed to changes in the average settings of speaking rate, F0 and SPL, which presumably can be perceived without the need for spectral place information. Some observed F2 realignment may be attributable to the reception of spectral cues.  相似文献   

3.
This study tested the relationship between frequency selectivity and the minimum spacing between harmonics necessary for accurate fo discrimination. Fundamental frequency difference limens (fo DLs) were measured for ten listeners with moderate sensorineural hearing loss (SNHL) and three normal-hearing listeners for sine- and random-phase harmonic complexes, bandpass filtered between 1500 and 3500 Hz, with fo's ranging from 75 to 500 Hz (or higher). All listeners showed a transition between small (good) fo DLs at high fo's and large (poor) fo DLs at low fo's, although the fo at which this transition occurred (fo,tr) varied across listeners. Three measures thought to reflect frequency selectivity were significantly correlated to both the fo,tr and the minimum fo DL achieved at high fo's: (1) the maximum fo for which fo DLs were phase dependent, (2) the maximum modulation frequency for which amplitude modulation and quasi-frequency modulation were discriminable, and (3) the equivalent rectangular bandwidth of the auditory filter, estimated using the notched-noise method. These results provide evidence of a relationship between fo discrimination performance and frequency selectivity in listeners with SNHL, supporting "spectral" and "spectro-temporal" theories of pitch perception that rely on sharp tuning in the auditory periphery to accurately extract fo information.  相似文献   

4.
To determine the minimum difference in amplitude between spectral peaks and troughs sufficient for vowel identification by normal-hearing and hearing-impaired listeners, four vowel-like complex sounds were created by summing the first 30 harmonics of a 100-Hz tone. The amplitudes of all harmonics were equal, except for two consecutive harmonics located at each of three "formant" locations. The amplitudes of these harmonics were equal and ranged from 1-8 dB more than the remaining components. Normal-hearing listeners achieved greater than 75% accuracy when peak-to-trough differences were 1-2 dB. Normal-hearing listeners who were tested in a noise background sufficient to raise their thresholds to the level of a flat, moderate hearing loss needed a 4-dB difference for identification. Listeners with a moderate, flat hearing loss required a 6- to 7-dB difference for identification. The results suggest, for normal-hearing listeners, that the peak-to-trough amplitude difference required for identification of this set of vowels is very near the threshold for detection of a change in the amplitude spectrum of a complex signal. Hearing-impaired listeners may have difficulty using closely spaced formants for vowel identification due to abnormal smoothing of the internal representation of the spectrum by broadened auditory filters.  相似文献   

5.
This study examined the effects of mild-to-moderate sensorineural hearing loss on vowel perception abilities of young, hearing-impaired (YHI) adults. Stimuli were presented at a low conversational level with a flat frequency response (approximately 60 dB SPL), and in two gain conditions: (a) high level gain with a flat frequency response (95 dB SPL), and (b) frequency-specific gain shaped according to each listener's hearing loss (designed to simulate the frequency response provided by a linear hearing aid to an input signal of 60 dB SPL). Listeners discriminated changes in the vowels /I e E inverted-v ae/ when F1 or F2 varied, and later categorized the vowels. YHI listeners performed better in the two gain conditions than in the conversational level condition. Performances in the two gain conditions were similar, suggesting that upward spread of masking was not seen at these signal levels for these tasks. Results were compared with those from a group of elderly, hearing-impaired (EHI) listeners, reported in Coughlin, Kewley-Port, and Humes [J. Acoust. Soc. Am. 104, 3597-3607 (1998)]. Comparisons revealed no significant differences between the EHI and YHI groups, suggesting that hearing impairment, not age, is the primary contributor to decreased vowel perception in these listeners.  相似文献   

6.
A quantitative perceptual model of human vowel recognition based upon psychoacoustic and speech perception data is described. At an intermediate auditory stage of processing, the specific bark difference level of the model represents the pattern of peripheral auditory excitation as the distance in critical bands (barks) between neighboring formants and between the fundamental frequency (F0) and first formant (F1). At a higher, phonetic stage of processing, represented by the critical bark difference level of the model, the transformed vowels may be dichotomously classified based on whether the difference between formants in each dimension falls within or exceeds the critical distance of 3 bark for the spectral center of gravity effect [Chistovich et al., Hear. Res. 1, 185-195 (1979)]. Vowel transformations and classifications correspond well to several major phonetic dimensions and features by which vowels are perceived and traditionally classified. The F1-F0 dimension represents vowel height, and high vowels have F1-F0 differences within 3 bark. The F3-F2 dimension corresponds to vowel place of articulation, and front vowels have F3-F2 differences of less than 3 bark. As an inherent, speaker-independent normalization procedure, the model provides excellent vowel clustering while it greatly reduces between-speaker variability. It offers robust normalization through feature classification because gross binary categorization allows for considerable acoustic variability. There was generally less formant and bark difference variability for closely spaced formants than for widely spaced formants. These findings agree with independently observed perceptual results and support Stevens' quantal theory of vowel production and perceptual constraints on production predicted from the critical bark difference level of the model.  相似文献   

7.
Spectral integration refers to the summation of activity beyond the bandwidth of the peripheral auditory filter. Several experimental lines have sought to determine the bandwidth of this "supracritical" band phenomenon. This paper reports on two experiments which tested the limit on spectral integration in the same listeners. Experiment I verified the critical separation of 3.5 bark in two-formant synthetic vowels as advocated by the center-of-gravity (COG) hypothesis. According to the COG effect, two formants are integrated into a single perceived peak if their separation does not exceed approximately 3.5 bark. With several modifications to the methods of a classic COG matching task, the present listeners responded to changes in pitch in two-formant synthetic vowels, not estimating their phonetic quality. By changing the amplitude ratio of the formants, the frequency of the perceived peak was closer to that of the stronger formant. This COG effect disappeared with larger formant separation. In a second experiment, auditory spectral resolution bandwidths were measured for the same listeners using common-envelope, two-tone complex signals. Results showed that the limits of spectral averaging in two-formant vowels and two-tone spectral resolution bandwidth were related for two of the three listeners. The third failed to perform the discrimination task. For the two subjects who completed both tasks, the results suggest that the critical region in vowel task and the complex-tone discriminability estimates are linked to a common mechanism, i.e., to an auditory spectral resolving power. A signal-processing model is proposed to predict the COG effect in two-formant synthetic vowels. The model introduces two modifications to Hermansky's [J. Acoust. Soc. Am. 87, 1738-1752 (1990)] perceptual linear predictive (PLP) model. The model predictions are generally compatible with the present experimental results and with the predictions of several earlier models accounting for the COG effect.  相似文献   

8.
Algorithms designed to improve speech intelligibility for those with sensorineural hearing loss (SNHL) by enhancing peaks in a spectrum have had limited success. Since testing of such algorithms cannot separate the theory of the design from the implementation itself, the contribution of each of these potentially limiting factors is not clear. Therefore, psychophysical paradigms were used to test subjects with either normal hearing or SNHL in detection tasks using well controlled stimuli to predict and assess the limits in performance gain from a spectrally enhancing algorithm. A group of normal-hearing (NH) and hearing-impaired (HI) subjects listened in two experiments: auditory filter measurements and detection of incremented harmonics in a harmonic spectrum. The results show that NH and HI subjects have an improved ability to detect incremented harmonics when there are spectral decrements surrounding the increment. Various decrement widths and depths were compared against subjects' equivalent rectangular bandwidths (ERBs). NH subjects effectively used the available energy cue in their auditory filters. Some HI subjects, while showing significant improvements, underutilized the energy reduction in their auditory filters.  相似文献   

9.
The effect of diminished auditory feedback on monophthong and diphthong production was examined in postlingually deafened Australian-English speaking adults. The participants were 4 female and 3 male speakers with severe to profound hearing loss, who were compared to 11 age- and accent-matched normally hearing speakers. The test materials were 5 repetitions of hVd words containing 18 vowels. Acoustic measures that were studied included F1, F2, discrete cosine transform coefficients (DCTs), and vowel duration information. The durational analyses revealed increased total vowel durations with a maintenance of the tense/lax vowel distinctions in the deafened speakers. The deafened speakers preserved a differentiated vowel space, although there were some gender-specific differences seen. For example, there was a retraction of F2 in the front vowels for the female speakers that did not occur in the males. However, all deafened speakers showed a close correspondence between the monophthong and diphthong formant movements that did occur. Gaussian classification highlighted vowel confusions resulting from changes in the deafened vowel space. The results support the view that postlingually deafened speakers maintain reasonably good speech intelligibility, in part by employing production strategies designed to bolster auditory feedback.  相似文献   

10.
The purpose of this study was to examine the effect of spectral-cue audibility on the recognition of stop consonants in normal-hearing and hearing-impaired adults. Subjects identified six synthetic CV speech tokens in a closed-set response task. Each syllable differed only in the initial 40-ms consonant portion of the stimulus. In order to relate performance to spectral-cue audibility, the initial 40 ms of each CV were analyzed via FFT and the resulting spectral array was passed through a sliding-filter model of the human auditory system to account for logarithmic representation of frequency and the summation of stimulus energy within critical bands. This allowed the spectral data to be displayed in comparison to a subject's sensitivity thresholds. For normal-hearing subjects, an orderly function relating the percentage of audible stimulus to recognition performance was found, with perfect discrimination performance occurring when the bulk of the stimulus spectrum was presented at suprathreshold levels. For the hearing-impaired subjects, however, it was found in many instances that suprathreshold presentation of stop-consonant spectral cues did not yield recognition equivalent to that found for the normal-hearing subjects. These results demonstrate that while the audibility of individual stop consonants is an important factor influencing recognition performance in hearing-impaired subjects, it is not always sufficient to explain the effects of sensorineural hearing loss.  相似文献   

11.
Frequency resolution was evaluated for two normal-hearing and seven hearing-impaired subjects with moderate, flat sensorineural hearing loss by measuring percent correct detection of a 2000-Hz tone as the width of a notch in band-reject noise increased. The level of the tone was fixed for each subject at a criterion performance level in broadband noise. Discrimination of synthetic speech syllables that differed in spectral content in the 2000-Hz region was evaluated as a function of the notch width in the same band-reject noise. Recognition of natural speech consonant/vowel syllables in quiet was also tested; results were analyzed for percent correct performance and relative information transmitted for voicing and place features. In the hearing-impaired subjects, frequency resolution at 2000 Hz was significantly correlated with the discrimination of synthetic speech information in the 2000-Hz region and was not related to the recognition of natural speech nonsense syllables unless (a) the speech stimuli contained the vowel /i/ rather than /a/, and (b) the score reflected information transmitted for place of articulation rather than percent correct.  相似文献   

12.
The perception of auditory roughness presumably results from imperfect spectral or temporal resolution. Sensorineural hearing loss, by affecting spectral resolution, may therefore alter roughness perception. In this study, normal-hearing and hearing-impaired listeners estimated the roughness of amplitude-modulated tones varying in carrier frequency, modulation rate, and modulation depth. Their judgments were expected to reflect effects of impaired spectral resolution. Instead, their judgments were similar, in most respects, to those of normally-hearing listeners, except at very slow modulation rates. Results suggest that mild-to-moderate sensorineural hearing loss increases the roughness of slowly fluctuating signals.  相似文献   

13.
Abnormalities in the cochlear function usually cause broadening of the auditory filters which reduces the speech intelligibility. An attempt to apply a spectral enhancement algorithm has been undertaken to improve the identification of Polish vowels by subjects with cochlear-based hearing-impairment. The identification scores of natural (unprocessed) vowels and spectrally enhanced (processed) vowels has been measured for hearing-impaired subjects. It has been found that spectral enhancement improves vowel scores by about 10% for those subjects, however, a wide variation in individual performance among subjects has been observed. The overall vowels identification scores obtained were 85% for natural vowels and 96% for spectrally enhanced vowels.  相似文献   

14.
In this study, an adaptive procedure for categorical loudness scaling is introduced and evaluated. The procedure adjusts the presentation levels to the subject's individual auditory dynamic range without employing any premeasurement and presents levels in randomized order. The procedure has been named "Oldenburg-ACALOS" (Oldenburg-Adaptive CAtegorical LOudness Scaling). It was evaluated using repeated measurements with ten subjects with normal hearing and ten subjects with sensorineural hearing impairment. The results of this investigation revealed that the adaptive procedure provides greater reliability, while being more time efficient than a reference procedure that uses constant stimuli.  相似文献   

15.
The speech understanding of persons with "flat" hearing loss (HI) was compared to a normal-hearing (NH) control group to examine how hearing loss affects the contribution of speech information in various frequency regions. Speech understanding in noise was assessed at multiple low- and high-pass filter cutoff frequencies. Noise levels were chosen to ensure that the noise, rather than quiet thresholds, determined audibility. The performance of HI subjects was compared to a NH group listening at the same signal-to-noise ratio and a comparable presentation level. Although absolute speech scores for the HI group were reduced, performance improvements as the speech and noise bandwidth increased were comparable between groups. These data suggest that the presence of hearing loss results in a uniform, rather than frequency-specific, deficit in the contribution of speech information. Measures of auditory thresholds in noise and speech intelligibility index (SII) calculations were also performed. These data suggest that differences in performance between the HI and NH groups are due primarily to audibility differences between groups. Measures of auditory thresholds in noise showed the "effective masking spectrum" of the noise was greater for the HI than the NH subjects.  相似文献   

16.
Vowel and consonant confusion matrices were collected in the hearing alone (H), lipreading alone (L), and hearing plus lipreading (HL) conditions for 28 patients participating in the clinical trial of the multiple-channel cochlear implant. All patients were profound-to-totally deaf and "hearing" refers to the presentation of auditory information via the implant. The average scores were 49% for vowels and 37% for consonants in the H condition and the HL scores were significantly higher than the L scores. Information transmission and multidimensional scaling analyses showed that different speech features were conveyed at different levels in the H and L conditions. In the HL condition, the visual and auditory signals provided independent information sources for each feature. For vowels, the auditory signal was the major source of duration information, while the visual signal was the major source of first and second formant frequency information. The implant provided information about the amplitude envelope of the speech and the estimated frequency of the main spectral peak between 800 and 4000 Hz, which was useful for consonant recognition. A speech processor that coded the estimated frequency and amplitude of an additional peak between 300 and 1000 Hz was shown to increase the vowel and consonant recognition in the H condition by improving the transmission of first formant and voicing information.  相似文献   

17.
The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception was linked to a specific deficit, the auditory profiles of the individual listeners were characterized using measures of loudness perception, cognitive ability, binaural processing, temporal fine structure processing, and frequency selectivity, in addition to common audiometric measures. Two of the listeners were found not to perceive binaural pitch at all, despite a clear detection of monaural pitch. While both binaural and monaural pitches were detectable by all other listeners, identification scores were significantly lower for binaural than for monaural pitch. A total absence of binaural pitch sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization.  相似文献   

18.
Neural-population interactions resulting from excitation overlap in multi-channel cochlear implants (CI) may cause blurring of the "internal" auditory representation of complex sounds such as vowels. In experiment I, confusion matrices for eight German steady-state vowellike signals were obtained from seven CI listeners. Identification performance ranged between 42% and 74% correct. On the basis of an information transmission analysis across all vowels, pairs of most and least frequently confused vowels were selected for each subject. In experiment II, vowel masking patterns (VMPs) were obtained using the previously selected vowels as maskers. The VMPs were found to resemble the "electrical" vowel spectra to a large extent, indicating a relatively weak effect of neural-population interactions. Correlation between vowel identification data and VMP spectral similarity, measured by means of several spectral distance metrics, showed that the CI listeners identified the vowels based on differences in the between-peak spectral information as well as the location of spectral peaks. The effect of nonlinear amplitude mapping of acoustic into "electrical" vowels, as performed in the implant processors, was evaluated separately and compared to the effect of neural-population interactions. Amplitude mapping was found to cause more blurring than neural-population interactions. Subjects exhibiting strong blurring effects yielded lower overall vowel identification scores.  相似文献   

19.
The present study compared the abilities of normal and hearing-impaired subjects to discriminate differences in the spectral shapes of speechlike sounds. The minimum detectable change in amplitude of a second-formant spectral peak was determined for steady-state stimuli across a range of presentation levels. In many cases, the hearing-impaired subjects required larger spectral peaks than did the normal-hearing subjects. The performance of all subjects showed a dependence upon presentation level. For some hearing-impaired subjects, high presentation levels resulted in discrimination values similar to that of normal-hearing subjects, while for other hearing-loss subjects, increases in presentation level did not yield normal values, even when the second-formant spectral region was presented at levels above the subject's sensitivity thresholds. These results demonstrate that under certain conditions, some sensorineural hearing-impaired subjects require more prominent spectral peaks in certain speech sounds than normal subjects for equivalent performance. For the group of subjects who did not achieve normal discrimination results at any presentation level, application of high-frequency amplification to the stimuli was successful in returning those subjects' performance to within normal values.  相似文献   

20.
This study compared how normal-hearing listeners (NH) and listeners with moderate to moderately severe cochlear hearing loss (HI) use and combine information within and across frequency regions in the perceptual separation of competing vowels with fundamental frequency differences (deltaF0) ranging from 0 to 9 semitones. Following the procedure of Culling and Darwin [J. Acoust. Soc. Am. 93, 3454-3467 (1993)], eight NH listeners and eight HI listeners identified competing vowels with either a consistent or inconsistent harmonic structure. Vowels were amplified to assure audibility for HI listeners. The contribution of frequency region depended on the value of deltaF0 between the competing vowels. When deltaF0 was small, both groups of listeners effectively utilized deltaF0 cues in the low-frequency region. In contrast, HI listeners derived significantly less benefit than NH listeners from deltaF0 cues conveyed by the high-frequency region at small deltaF0's. At larger deltaF0's, both groups combined deltaF0 cues from the low and high formant-frequency regions. Cochlear impairment appears to negatively impact the ability to use F0 cues for within-formant grouping in the high-frequency region. However, cochlear loss does not appear to disrupt the ability to use within-formant F0 cues in the low-frequency region or to group F0 cues across formant regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号