首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, nilpotent subsemigroups in the matrix semigroup over a commutative antiring are discussed. Some basic properties and characterizations for the nilpotent subsemigroups are given, and some equivalent conditions for the matrix semigroup over a commutative antiring to have a maximal nilpotent subsemigroup are obtained. Also, the maximal nilpotent subsemigroups in the matrix semigroup are described.  相似文献   

2.
An n × n sign pattern Sn is potentially nilpotent if there is a real matrix having sign pattern Sn and characteristic polynomial xn. A new family of sign patterns Cn with a cycle of every even length is introduced and shown to be potentially nilpotent by explicitly determining the entries of a nilpotent matrix with sign pattern Cn. These nilpotent matrices are used together with a Jacobian argument to show that Cn is spectrally arbitrary, i.e., there is a real matrix having sign pattern Cn and characteristic polynomial for any real μi. Some results and a conjecture on minimality of these spectrally arbitrary sign patterns are given.  相似文献   

3.
The existence of limiting spectral distribution (LSD) of the product of two random matrices is proved. One of the random matrices is a sample covariance matrix and the other is an arbitrary Hermitian matrix. Specially, the density function of LSD of SnWn is established, where Sn is a sample covariance matrix and Wn is Wigner matrix.  相似文献   

4.
An n×n ray pattern matrix S is said to be spectrally arbitrary if for every monic nth degree polynomial f(λ) with coefficients from C, there is a complex matrix in the ray pattern class of S such that its characteristic polynomial is f(λ). In this article we give new classes of spectrally arbitrary ray pattern matrices.  相似文献   

5.
Let A be a symmetric matrix of size n×n with entries in some (commutative) field K. We study the possibility of decomposing A into two blocks by conjugation by an orthogonal matrix T∈Matn(K). We say that A is absolutely indecomposable if it is indecomposable over every extension of the base field. If K is formally real then every symmetric matrix A diagonalizes orthogonally over the real closure of K. Assume that K is a not formally real and of level s. We prove that in Matn(K) there exist symmetric, absolutely indecomposable matrices iff n is congruent to 0, 1 or −1 modulo 2s.  相似文献   

6.
This paper proves that the maximum order-index of n × n matrices over an arbitrary commutative incline equals (n − 1)2 + 1. This is an answer to an open problem “Compute the maximum order-index of a member of Mn(L)”, proposed by Cao, Kim and Roush in a monograph Incline Algebra and Applications, 1984, where Mn(L) is the set of all n × n matrices over an incline L.  相似文献   

7.
A matrix M is nilpotent of index 2 if M2=0. Let V be a space of nilpotent n×n matrices of index 2 over a field k where and suppose that r is the maximum rank of any matrix in V. The object of this paper is to give an elementary proof of the fact that . We show that the inequality is sharp and construct all such subspaces of maximum dimension. We use the result to find the maximum dimension of spaces of anti-commuting matrices and zero subalgebras of special Jordan Algebras.  相似文献   

8.
In a recent paper, Neumann and Sze considered for an n × n nonnegative matrix A, the minimization and maximization of ρ(A + S), the spectral radius of (A + S), as S ranges over all the doubly stochastic matrices. They showed that both extremal values are always attained at an n × n permutation matrix. As a permutation matrix is a particular case of a normal matrix whose spectral radius is 1, we consider here, for positive matrices A such that (A + N) is a nonnegative matrix, for all normal matrices N whose spectral radius is 1, the minimization and maximization problems of ρ(A + N) as N ranges over all such matrices. We show that the extremal values always occur at an n × n real unitary matrix. We compare our results with a less recent work of Han, Neumann, and Tastsomeros in which the maximum value of ρ(A + X) over all n × n real matrices X of Frobenius norm was sought.  相似文献   

9.
Let V be a linear subspace of Mn,p(K) with codimension lesser than n, where K is an arbitrary field and n?p. In a recent work of the author, it was proven that V is always spanned by its rank p matrices unless n=p=2 and K?F2. Here, we give a sufficient condition on codim V for V to be spanned by its rank r matrices for a given r∈?1,p-1?. This involves a generalization of the Gerstenhaber theorem on linear subspaces of nilpotent matrices.  相似文献   

10.
Amitsur’s formula, which expresses det(A + B) as a polynomial in coefficients of the characteristic polynomial of a matrix, is generalized for partial linearizations of the pfaffian of block matrices. As applications, in upcoming papers we determine generators for the SO(n)-invariants of several matrices and relations for the O(n)-invariants of several matrices over a field of arbitrary characteristic.  相似文献   

11.
Let KE, KE be convex cones residing in finite-dimensional real vector spaces. An element y in the tensor product EE is KK-separable if it can be represented as finite sum , where xlK and for all l. Let S(n), H(n), Q(n) be the spaces of n×n real symmetric, complex Hermitian and quaternionic Hermitian matrices, respectively. Let further S+(n), H+(n), Q+(n) be the cones of positive semidefinite matrices in these spaces. If a matrix AH(mn)=H(m)⊗H(n) is H+(m)⊗H+(n)-separable, then it fulfills also the so-called PPT condition, i.e. it is positive semidefinite and has a positive semidefinite partial transpose. The same implication holds for matrices in the spaces S(m)⊗S(n), H(m)⊗S(n), and for m?2 in the space Q(m)⊗S(n). We provide a complete enumeration of all pairs (n,m) when the inverse implication is also true for each of the above spaces, i.e. the PPT condition is sufficient for separability. We also show that a matrix in Q(n)⊗S(2) is Q+(n)⊗S+(2)- separable if and only if it is positive semidefinite.  相似文献   

12.
Two Hermitian matrices A,BMn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix CMn(C) such that B=CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible inertias of the Hermitian matrices C that carry the congruence. We also give necessary and sufficient conditions for any 2-by-2 nonsingular Hermitian matrices to be Hermitian-congruent. In both of the studied cases, we show that if A and B are real and Hermitian-congruent, then they are congruent by a real symmetric matrix. Finally we note that if A and B are 2-by-2 nonsingular real symmetric matrices having the same sign pattern, then there is always a real symmetric matrix C satisfying B=CAC. Moreover, if both matrices are positive, then C can be picked with arbitrary inertia.  相似文献   

13.
For a square matrix A, let S(A) be an eigenvalue inclusion set such as the Gershgorin region, the union of Cassini ovals, and the Ostrowski’s set. Characterization is obtained for maps Φ on n×n matrices satisfying S(Φ(A)Φ(B))=S(AB) for all matrices A and B.  相似文献   

14.
A collection A1A2, …, Ak of n × n matrices over the complex numbers C has the ASD property if the matrices can be perturbed by an arbitrarily small amount so that they become simultaneously diagonalizable. Such a collection must perforce be commuting. We show by a direct matrix proof that the ASD property holds for three commuting matrices when one of them is 2-regular (dimension of eigenspaces is at most 2). Corollaries include results of Gerstenhaber and Neubauer-Sethuraman on bounds for the dimension of the algebra generated by A1A2, …, Ak. Even when the ASD property fails, our techniques can produce a good bound on the dimension of this subalgebra. For example, we establish for commuting matrices A1, …, Ak when one of them is 2-regular. This bound is sharp. One offshoot of our work is the introduction of a new canonical form, the H-form, for matrices over an algebraically closed field. The H-form of a matrix is a sparse “Jordan like” upper triangular matrix which allows us to assume that any commuting matrices are also upper triangular. (The Jordan form itself does not accommodate this.)  相似文献   

15.
Our primary objective is to identify a natural and substantial problem about unitary similarity on arbitrary complex matrices: which 0-patterns may be achieved for any given n-by-n complex matrix via some unitary similarity of it. To this end, certain restrictions on “achievable” 0-patterns are mentioned, both positional and, more important, on the maximum number of achievable 0’s. Prior results fitting this general question are mentioned, as well as the “first” unresolved pattern (for 3-by-3 matrices!). In the process a recent question is answered.A closely related additional objective is to mention the best known bound for the maximum length of words necessary for the application of Specht’s theorem about which pairs of complex matrices are unitarily similar, which seems not widely known to matrix theorists. In the process, we mention the number of words necessary for small size matrices.  相似文献   

16.
The Riordan group consisting of Riordan matrices shows up naturally in a variety of combinatorial settings. In this paper, we define a q-Riordan matrix to be a q  -analogue of the (exponential) Riordan matrix by using the Eulerian generating functions of the form n?0fnzn/n!qn?0fnzn/n!q. We first prove that the set of q-Riordan matrices forms a loop (a quasigroup with an identity element) and find its loop structures. Next, it is shown that q-Riordan matrices associated to the counting functions may be applied to the enumeration problem on set partitions by block inversions. This notion leads us to find q-analogues of the composition formula and the exponential formula, respectively.  相似文献   

17.
On the way to establishing a commutative analog to the Gelfand-Kirillov theorem in Lie theory, Kostant and Wallach produced a decomposition of M(n) which we will describe in the language of linear algebra. The “Ritz values” of a matrix are the eigenvalues of its leading principal submatrices of order m=1,2,…,n. There is a unique unit upper Hessenberg matrix H with those eigenvalues. For real symmetric matrices with interlacing Ritz values, we extend their analysis to allow eigenvalues at successive levels to be equal. We also decide whether given Ritz values can come from a tridiagonal matrix.  相似文献   

18.
Let a,b and n be positive integers and the set S={x1,…,xn} of n distinct positive integers be a divisor chain (i.e. there exists a permutation σ on {1,…,n} such that xσ(1)|…|xσ(n)). In this paper, we show that if a|b, then the ath power GCD matrix (Sa) having the ath power (xi,xj)a of the greatest common divisor of xi and xj as its i,j-entry divides the bth power GCD matrix (Sb) in the ring Mn(Z) of n×n matrices over integers. We show also that if a?b and n?2, then the ath power GCD matrix (Sa) does not divide the bth power GCD matrix (Sb) in the ring Mn(Z). Similar results are also established for the power LCM matrices.  相似文献   

19.
20.
Let K be a field and let Mm×n(K) denote the space of m×n matrices over K. We investigate properties of a subspace M of Mm×n(K) of dimension n(m-r+1) in which each non-zero element of M has rank at least r and enumerate the number of elements of a given rank in M when K is finite. We also provide an upper bound for the dimension of a constant rank r subspace of Mm×n(K) when K is finite and give non-trivial examples to show that our bound is optimal in some cases. We include a similar a bound for the maximum dimension of a constant rank subspace of skew-symmetric matrices over a finite field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号