首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distance energy of a graph G is a recently developed energy-type invariant, defined as the sum of absolute values of the eigenvalues of the distance matrix of G. There was a vast research for the pairs and families of non-cospectral graphs having equal distance energy, and most of these constructions were based on the join of graphs. A graph is called circulant if it is Cayley graph on the circulant group, i.e. its adjacency matrix is circulant. A graph is called integral if all eigenvalues of its adjacency matrix are integers. Integral circulant graphs play an important role in modeling quantum spin networks supporting the perfect state transfer. In this paper, we characterize the distance spectra of integral circulant graphs and prove that these graphs have integral eigenvalues of distance matrix D. Furthermore, we calculate the distance spectra and distance energy of unitary Cayley graphs. In conclusion, we present two families of pairs (G1,G2) of integral circulant graphs with equal distance energy - in the first family G1 is subgraph of G2, while in the second family the diameter of both graphs is three.  相似文献   

2.
A graph G is said to be chromatic-choosable if ch(G)=χ(G). Ohba has conjectured that every graph G with 2χ(G)+1 or fewer vertices is chromatic-choosable. It is clear that Ohba's conjecture is true if and only if it is true for complete multipartite graphs. But for complete multipartite graphs, the graphs for which Ohba's conjecture has been verified are nothing more than K3*2,2*(k-3),1, K3,2*(k-1), and Ks+3,2*(k-s-1),1*s. These results have been obtained indirectly from the investigation about complete multipartite graphs by Gravier and Maffray and by Enomoto et al. In this paper we show that Ohba's conjecture is true for complete multipartite graphs K4,3,2*(k-4),1*2 and K5,3,2*(k-5),1*3. By the way, we give some discussions about a result of Enomoto et al.  相似文献   

3.
On the 2-rainbow domination in graphs   总被引:2,自引:0,他引:2  
The concept of 2-rainbow domination of a graph G coincides with the ordinary domination of the prism GK2. In this paper, we show that the problem of deciding if a graph has a 2-rainbow dominating function of a given weight is NP-complete even when restricted to bipartite graphs or chordal graphs. Exact values of 2-rainbow domination numbers of several classes of graphs are found, and it is shown that for the generalized Petersen graphs GP(n,k) this number is between ⌈4n/5⌉ and n with both bounds being sharp.  相似文献   

4.
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by no more than one other edge. A non-1-planar graph G is minimal if the graph G-e is 1-planar for every edge e of G. We prove that there are infinitely many minimal non-1-planar graphs (MN-graphs). It is known that every 6-vertex graph is 1-planar. We show that the graph K7-K3 is the unique 7-vertex MN-graph.  相似文献   

5.
A set S of vertices in a graph G is a total dominating set, denoted by TDS, of G if every vertex of G is adjacent to some vertex in S (other than itself). The minimum cardinality of a TDS of G is the total domination number of G, denoted by γt(G). If G does not contain K1,3 as an induced subgraph, then G is said to be claw-free. It is shown in [D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek, P.C.B. Lam, S. Seager, B. Wei, R. Yuster, Some remarks on domination, J. Graph Theory 46 (2004) 207-210.] that if G is a graph of order n with minimum degree at least three, then γt(G)?n/2. Two infinite families of connected cubic graphs with total domination number one-half their orders are constructed in [O. Favaron, M.A. Henning, C.M. Mynhardt, J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34(1) (2000) 9-19.] which shows that this bound of n/2 is sharp. However, every graph in these two families, except for K4 and a cubic graph of order eight, contains a claw. It is therefore a natural question to ask whether this upper bound of n/2 can be improved if we restrict G to be a connected cubic claw-free graph of order at least 10. In this paper, we answer this question in the affirmative. We prove that if G is a connected claw-free cubic graph of order n?10, then γt(G)?5n/11.  相似文献   

6.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. For every pair of positive integers n,k, it is proved that if 3?k?n-3, then Hn,k, the graph obtained from the star K1,n-1 by joining a vertex of degree 1 to k+1 other vertices of degree 1, is the unique connected graph that maximizes the largest signless Laplacian eigenvalue over all connected graphs with n vertices and n+k edges.  相似文献   

7.
Graphs with a few distinct eigenvalues usually possess an interesting combinatorial structure. We show that regular, bipartite graphs with at most six distinct eigenvalues have the property that each vertex belongs to the constant number of quadrangles. This enables to determine, from the spectrum alone, the feasible families of numbers of common neighbors for each vertex with other vertices in its part. For particular spectra, such as [6,29,06,-29,-6] (where exponents denote eigenvalue multiplicities), there is a unique such family, which makes it possible to characterize all graphs with this spectrum.Using this lemma we also to show that, for r?2, a graph has spectrum if and only if it is a graph of a 1-resolvable transversal design TD(r,r), i.e., if it corresponds to the complete set of mutually orthogonal Latin squares of size r in a well-defined manner.  相似文献   

8.
A graph G is induced matching extendable (shortly, IM-extendable), if every induced matching of G is included in a perfect matching of G. A graph G is claw-free, if G does not contain any induced subgraph isomorphic to K1,3. The kth power of a graph G, denoted by Gk, is the graph with vertex set V(G) in which two vertices are adjacent if and only if the distance between them in G is at most k. In this paper, the 4-regular claw-free IM-extendable graphs are characterized. It is shown that the only 4-regular claw-free connected IM-extendable graphs are , and Tr, r?2, where Tr is the graph with 4r vertices ui,vi,xi,yi, 1?i?r, such that for each i with 1?i?r, {ui,vi,xi,yi} is a clique of Tr and . We also show that a 4-regular strongly IM-extendable graph must be claw-free. As a consequence, the only 4-regular strongly IM-extendable graphs are K4×K2, and .  相似文献   

9.
Let G be a finite graph of order n with an eigenvalue μ of multiplicity k. (Thus the μ-eigenspace of a (0,1)-adjacency matrix of G has dimension k.) A star complement for μ in G is an induced subgraph G-X of G such that |X|=k and G-X does not have μ as an eigenvalue. An exceptional graph is a connected graph, other than a generalized line graph, whose eigenvalues lie in [-2,). We establish some properties of star complements, and of eigenvectors, of exceptional graphs with least eigenvalue −2.  相似文献   

10.
The least eigenvalue of graphs with given connectivity   总被引:2,自引:0,他引:2  
Let G be a simple graph and A(G) be the adjacency matrix of G. The eigenvalues of G are those of A(G). In this paper, we characterize the graphs with the minimal least eigenvalue among all graphs of fixed order with given vertex connectivity or edge connectivity.  相似文献   

11.
A graph G=(V,E) is called a split graph if there exists a partition V=IK such that the subgraphs of G induced by I and K are empty and complete graphs, respectively. In 1980, Burkard and Hammer gave a necessary but not sufficient condition for hamiltonian split graphs with |I|<|K|. In this paper, we show that the Burkard-Hammer condition is also sufficient for the existence of a Hamilton cycle in a split graph G such that 5≠|I|<|K| and the minimum degree δ(G)?|I|-3. For the case 5=|I|<|K|, all split graphs satisfying the Burkard-Hammer condition but having no Hamilton cycles are also described.  相似文献   

12.
Let G be a connected graph with Colin de Verdière number μ(G). We study the behaviour of μ with respect to the Cartesian product of graphs. We conjecture that if G=G1G2, with G1,G2 connected, then μ(G)?μ(G1)+μ(G2) and prove that μ(G)?μ(G1)+h(G2)-1, where h is the Hadwiger number (i.e. the order of the largest clique minor). In addition we provide an explicit construction of a Colin de Verdière matrix with corank μ(G1)+μ(Kn) for the graph G=G1Kn.  相似文献   

13.
《Quaestiones Mathematicae》2013,36(2):249-258
Abstract

It is shown that if G is a graph of order 16 such that C5+e ? G and K5 ? [Gbar] then either 4K4 ? G or G is one of 5 other graphs.  相似文献   

14.
15.
The energy of a graph is defined as the sum of the absolute values of all the eigenvalues of the graph. Let G(n,d) be the class of tricyclic graphs G on n vertices with diameter d and containing no vertex disjoint odd cycles Cp,Cq of lengths p and q with p+q2(mod4). In this paper, we characterize the graphs with minimal energy in G(n,d).  相似文献   

16.
The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. It is known that η(G)?n-2 if G is a simple graph on n vertices and G is not isomorphic to nK1. The extremal graphs attaining the upper bound n-2 and the second upper bound n-3 have been obtained. In this paper, the graphs with nullity n-4 are characterized. Furthermore the tricyclic graphs with maximum nullity are discussed.  相似文献   

17.
The new methods for constructing matching-equivalence graphs   总被引:1,自引:0,他引:1  
Two graphs G and H with order n are said to be matching-equivalent if and only if the number of r-matchings (i.e., the number of ways in which r disjoint edges can be chosen) is the same for each of the graphs G and H for each r, where 0?r?n. In this paper, the new methods for constructing ‘matching-equivalent’ graphs are given, and some families of non-matching unique graphs are also obtained.  相似文献   

18.
Fiber-complemented graphs form a vast non-bipartite generalization of median graphs. Using a certain natural coloring of edges, induced by parallelism relation between prefibers of a fiber-complemented graph, we introduce the crossing graph of a fiber-complemented graph G as the graph whose vertices are colors, and two colors are adjacent if they cross on some induced 4-cycle in G. We show that a fiber-complemented graph is 2-connected if and only if its crossing graph is connected. We characterize those fiber-complemented graphs whose crossing graph is complete, and also those whose crossing graph is chordal.  相似文献   

19.
20.
Suppose G is a graph and λ1,λ2,…,λn are the eigenvalues of G. The Estrada index EE(G) of G is defined as the sum of eλi, 1in. In this paper some new upper bounds for the Estrada index of bipartite graphs are presented. We apply our result on a (4,6)-fullerene to improve our bound given in an earlier paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号