首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have fabricated a molecular recognition ion gating membrane. This synthetic membrane spontaneously opens and closes its pores in response to specific solvated ions. In addition to this switching function, we found that this membrane could control its pore size in response to a known concentration of a specific ion. The membrane was prepared by plasma graft copolymerization, which filled the pores of porous polyethylene film with a copolymer of NIPAM (N-isopropylacrylamide) and BCAm (benzo[18]crown-6-acrylamide). NIPAM is well-known to have an LCST (lower critical solution temperature), at which its volume changes dramatically in water. The crown receptor of the BCAm traps a specific ion, and causes a shift in the LCST. Therefore, selectively responding to either K(+) or Ba(2+), the grafted copolymer swelled and shrank in the pores at a constant temperature between two LCSTs. The solution flux in the absence of Ba(2+) decreased by about 2 orders of magnitude over a solution flux containing Ba(2+). The pore size was estimated by the filtration of aqueous dextran solutions with various solute sizes. This revealed that the membrane changed its pore size between 5 and 27 nm in response to the Ba(2+) concentration changes. No such change was observed for Ca(2+) solutions. Furthermore, this pore size change occurred uniformly in all pores, as a clear cut-off value for a solute size that could pass through pores was always present. This membrane may be useful not only as a molecular recognition ion gate, but also as a device for spontaneously controlling the permeation flux and solute size.  相似文献   

2.
A controlled-release device that responds to a specific molecular signal is an ideal goal in drug delivery and tissue engineering. A molecular recognition ion gating membrane, in which a copolymer of N-isopropylacrylamide and benzo[18]-crown-6-acrylamide was grafted onto the surface of the porous polyethylene film, was used to control the permeability of vitamin B12 and lysozyme in response to a specific ion signal. The observed response depended on the amount of grafted copolymer. When the grafting ratio was below 15%, the membrane pores opened by Ca2+ and closed by Ba2+. The permeability of model drugs became higher by opening of the pores. On the other hand, when the grafting ratio was above 15%, the properties of the membrane changed. The permeability of model drugs became lower by Ca2+ due to dehydration of the grafted copolymer. The opposite responses were observed at different grafting ratios.  相似文献   

3.
The swelling of dextran gels (Sephadex) in salt solutions with a water activity of 0.937, compared with the swelling in pure water, exhibited anion specificity as evidenced by an increased swelling ratio in the following order: Na2SO4 < H2O < NaCl < NaSCN. The swelling ratio showed a good linear correlation with the osmotic pressure of dextran (500 kD) in these solutions. The salt‐concentration difference (imbalance) between the polymer‐solution side of the membrane and the polymer‐free permeate side during the osmotic‐pressure measurements positively correlated with the effect of the salt on the polymer osmotic pressure. These phenomena conform to Hofmeister‐type (or lyotropic) behavior. The diminishing augmentation of dextran osmotic pressure and the change in the salt‐concentration imbalance with rising NaSCN concentration imply a positive preferential interaction and adsorption of the salt onto the polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2740–2750, 2001  相似文献   

4.
Facilitated transport of silver ion across a supported liquid membrane (SLM) by calix[4]pyrroles, as selective ion carriers, dissolved in kerosene has been investigated. The influences of fundamental parameters affecting the transport of silver ion including ion carrier concentration in the membrane phase, thiosulfate concentration in strip phase, picric acid concentration in the feed phase, stirring speed of aqueous phases, type of membrane solvent and time of transport have been studied. In the presence of thiosulfate as a suitable metal ion acceptor in the strip phase and picrate ion as ion pairing agent in the source phase, transport of silver occurs almost quantitatively after 75 min. The selectivity and efficiency of silver transport from aqueous solution containing Cu2+, Mg2+, Ni2+, Ca2+, Zn2+, Pb2+, Co2+, Al3+, Hg2+, Cd2+, Fe3+, Fe2+ and Cr3+ were investigated.  相似文献   

5.
Experimental results obtained by membrane equilibria, osmotic pressure, viscosity and circular dichroism measurements on alginate and pectate solutions in the presence of Ca2+ ions are presented. From equilibrium dialysis data both electrostatic and cooperative interactions seem to describe the binding process of Ca2+ ions onto polymer chains. An increase of the number-average molecular weight M̄n for both poly-saccharides with calcium ion concentration is observed. An increase of polymer dimensions can well account for the observed increase of the intrinsic viscosity [η] with bound Ca2+ ion concentration at several ionic strengths.  相似文献   

6.
The ultrafiltration of macromolecules is characterised by a limiting flux at high transmembrane pressures. There is also some evidence that at high pressures and low crossflow velocities the flux decreases slightly with increasing pressure. It is confirmed from a theoretical viewpoint that this can only be caused by a decrease in the average mass-transfer coefficient due to concentration increases in the boundary layer. At the practical level, we propose an expression which, for a given system, enables the ideal flux to be estimated a priori as a function of the transmembrane pressure. The ideal flux is defined as that flux which would occur in the absence of fouling and gelation. The model includes the influence of both osmotic pressure and the variation in viscosity due to concentration polarisation. Thus for predictive purposes knowledge of osmotic pressure and viscosity as a function of concentration is required. The only membrane parameter that has to be experimentally determined is the membrane permeability. In the absence of adsorption (which is the ideal case) this is the permeability to the pure solvent. The model has been tested against Jonsson's data for the ultrafiltration of dextran solutions. The results are most encouraging.  相似文献   

7.
A numerical method was set up to calculate the dynamic concentration behavior of charged particles in the vicinity of an ion channel. It takes into account the electric potential due to the charge of the transported ions. Additionally, the finite on- and off-kinetics of mobile ion-buffers such as EGTA can be added to the simulations. The calculations were carried out using a modified Crank-Nicolson algorithm to solve the partial differential equations describing the problem. It was found that the electrostatic effect on the concentration of permeating ions is negligible in the presence of physiological salt concentrations. Nevertheless, there are electrostatic effects on other ion species near the channel mouth. Studies on the effect of a Ba2+ -current through a Ca2+ -channel onto the Ca2+ -concentration in the bath, and on the amplification of the Ca2+ -effect on the BK-channel due to the K+ -flux are presented. Additionally, the effect of mobile buffers was simulated and the numerical results are compared with some common analytical approximations.  相似文献   

8.
A novel thermoresponsive hydrogel with ion-recognition property was prepared via free-radical cross-linking copolymerization of N-isopropylacrylamide (NIPAM) with benzo-18-crown-6-acrylamide (BCAm) as host receptor. Both chemical structures and stimuli-sensitive properties of the prepared poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) P(NIPAM-co-BCAm) hydrogel were characterized. The smart hydrogel could respond to both temperature and ion stimuli. When the crown ether units captured Ba2+ and formed stable BCAm/Ba2+ host-guest complexes, the lower critical solution temperature (LCST) of the hydrogel increased due to the repulsion among charged BCAm/Ba2+ complex groups and osmotic pressure within the hydrogel. Whereas crown ethers captured Cs+, the LCST shifted to a lower temperature because of the formation of 2:1 sandwich complexes. Unexpectedly, the LCST of the cross-linked P(NIPAM-co-BCAm) hydrogel in K+ solution did not shift to a higher temperature, which was definitely different from the previously reported linear P(NIPAM-co-BCAm) copolymer in K+ solution. The results of this work provide valuable information for development of dual thermo- and ion-responsive hydrogels which have potential applications in drug controlled-release systems or biomedical fields.  相似文献   

9.
The cation exchange properties of alkali and alkaline earth metal cations at room temperature were investigated on an ultrafine, highly charged Na-4-mica (with the ideal mica composition Na4Mg6Al4Si4O20F4.xH2O). Ultrafine mica crystallites of 200 nm in size led to faster Sr2+ uptake kinetics in comparison to larger mica crystallites. The alkali metal ion (K+, Cs+, and Li+) exchange uptake was rapid, and complete exchange occurred within 30 min. For the alkaline earth metal ions Ba2+, Ca2+, and Mg2+, however, the exchange uptake required lengthy periods from 3 days to 4 weeks to be completed, similar to its Sr uptake, as previously reported. Kinetic models of the modified Freundlich and parabolic diffusion were examined for the experimental data on the Ba2+, Ca2+, and Mg2+ uptakes. The modified Freundlich model described well the Ba2+ ion uptake kinetics as well as that for the Sr2+ ion, while for the Ca2+ and Mg2+ ions the parabolic diffusion model showed better fitting. The alkali and alkaline earth ion exchange isotherms were also determined in comparison to the Sr2+ exchange isotherm. The thermodynamic equilibria for these cations were compared by using Kielland plots evaluated from the isotherms.  相似文献   

10.
11.
The osmotic energy from a salinity gradient (i. e. blue energy) is identified as a promising non-intermittent renewable energy source for a sustainable technology. However, this membrane-based technology is facing major limitations for large-scale viability, primarily due to the poor membrane performance. An atomically thin 2D nanoporous material with high surface charge density resolves the bottleneck and leads to a new class of membrane material the salinity gradient energy. Although 2D nanoporous membranes show extremely high performance in terms of energy generation through the single pore, the fabrication and technical challenges such as ion concentration polarization make the nanoporous membrane a non-viable solution. On the other hand, the mesoporous and micro porous structures in the 2D membrane result in improved energy generation with very low fabrication complexity. In the present work, we report femtosecond (fs) laser-assisted scalable fabrication of μm to mm size pores on Graphene membrane for blue energy generation for the first time. A remarkable osmotic power in the order of μW has been achieved using mm size pores, which is about six orders of magnitudes higher compared to nanoporous membranes, which is mainly due to the diffusion-osmosis driven large ionic flux. Our work paves the way towards fs laser-assisted scalable pore creation in the 2D membrane for large-scale osmotic power generation.  相似文献   

12.
The performance of a newly synthesized carbosilane dendrimer bearing four triethylene glycol ether (TEG) units, Si(CH2CH2CH2Si(Me)2CH2CH2CH2(OCH2CH2)3Me)4 (1), as ionophores in ion-selective electrodes has been investigated. Optimization of the plasticized polyvinyl chloride membrane composition has produced electrodes that exhibit a Nernstian response for potassium ions. The best general characteristics exhibited by the electrodes were found when the membrane composition ratio of DPE:1:NaTPB:PVC 60:3:2:35 (wt%) was used. The response of the electrode was linear with a Nernstian slope of 58.3 mV/decade over the K+ ion concentration range of 1.9x10(-7) to 1.0x10(-1) M with a detection limit of 3.1x10(-7) M. The response time to achieve a 95% steady potential for the K+ concentration ranging from 1.0x10(-1) to 1.0x10(-8) M was less than 10 s, and it was found that the electrode is suitable for use within a pH range of 5.5-8.5. The selectivity coefficients (log KPotK+,Mn+)), which were determined by the fixed interference method, showed good selectivity for K+ against most of the interfering cations. The influence of this selective ion-binding behavior using electrospray ionization time-of-flight (ESI-TOF) mass spectrometric studies is discussed.  相似文献   

13.
An optical chemical sensor based on 2-mercaptopyrimidine (2-MP) in plasticized poly(vinyl chloride) (PVC) membrane incorporating (N,N-diethyl-5-(octadecanoylimino)-5H benzo[a]phenoxazine-9-amine (ETH 5294) and sodium tetraphenyl borate (NaTPB) for batch and flow-through determination of mercury ion is described. The response of the sensor is based on selective complexation of Hg2+ with 2-MP in the membrane phase, resulting in an ion exchange process between H+ in the membrane and Hg2+ in the sample solution. The influences of several experimental parameters, such as membrane composition, pH, and type and concentration of the regenerating reagent, were investigated. The sensor has a response range of 2.0 × 10−9 to 2.0 × 10−5 mol L−1 Hg2+ with a detection limit of 4.0 × 10−10 mol L−1 and a response time of ≤45 s at optimum pH of 6.5 with high measurement repeatability and sensor-to-sensor reproducibility. It shows high selectivity for Hg2+ over several transition metal ions, including Ag+, Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Mn2+, Ni2+, and common alkali and alkaline earth ions such as Na+, K+, Mg2+, Ca2+, and Pb2+. The sensor membrane can be easily regenerated with dilute acid solutions. The sensor has been used for the determination of mercury ion concentration in water samples.  相似文献   

14.
A simple potassium hydroxide electrodialytic generator (EDG) with singe membrane configuration is described. In this setup, one cation exchange resin (CER) bead is used to fabricate the EDG in place of the common membrane sheet. The device is implemented simply in a commercial stainless steel (SS) Tee which serves as both the EDG cartridge and the cathodic electrode. The present EDG has much lower internal volume (∼0.16 (L), which is well suited with capillary ion chromatography system. The device has been tested up pressures to 3200 psi and could be directly deployed on the high-pressure side of the pump. The electrolysis gas can be effectively removed by a segment of PTFE tubing. In the tested range of 0-100 mM, the KOH concentration is generated linearly with the applied current being near-Faradaic efficiency. The device permits both isocratic and gradient operation with good reproducibility, as demonstrated by the analysis of anions.  相似文献   

15.
A Pb2+ ion selective membrane electrode based on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) Zr(IV) monothiophosphate composite cation exchange material was fabricated using solution casting method. The effect of membrane composition on the proton exchange capacity was investigated by using varying amounts of electroactive material. The membrane with 250 mg of electroactive material and 10 µL of plasticiser exhibited higher proton conductivity. The optimised membrane composition was used for the fabrication of ion selective membrane electrode which exhibited typical Nernstian response towards Pb2+ ions in the concentration range 20.70 gL?1–20.7 µgL?1 (1 × 10–1–1 × 10–7 mol L?1) with a sub-Nernstian slope of 27.429 mV per decade change in Pb2+ ion concentration. The response time of the electrode under study for Pb2+ ions was found to be 11 s and the electrode can be used for 120 days without any considerable divergence in response potential. It can also be successfully used in the pH range from 3.0 to 6.5. It was found selective for Pb2+ ions in the presence of various monovalent, divalent and trivalent interfering metal ions. It was also employed as an indicator electrode in the potentiometric titration of Pb2+ ions using ethylenediaminetetraacetic acid, disodium salt, as a titrant.  相似文献   

16.
Masadome T  Asano Y  Nakamura T 《Talanta》1999,50(3):595-600
A potentiometric flow injection determination method for bromide ion in a developer was proposed, by utilizing a flow-through type bromide ion-selective electrode detector. The sensing membrane of the electrode was Ag(2)S-AgBr membrane. The response of the electrode detector as a peak-shape signal was obtained for injected bromide ion in a developer. A linear relationship was found to exist between peak height and the concentration of the bromide ion in a developer in a concentration range from 1.0x10(-3) to 1.0x10(-2) mol l(-1). The relative standard deviation for 10 injections of a 6x10(-3) mol l(-1) bromide ion in a developer was 1.3% and the sampling rate was ca 17-20 samples h(-1). The present method was free from the interference of an organic reducing reagent, an organic substance in a developer sample solution for the determination of bromide ion in a developer.  相似文献   

17.
Salinity gradient energy, as a type of blue energy, is a promising sustainable energy source. Its energy conversion efficiency is significantly determined by the selective membranes. Recently, nanofluidic membrane made by two-dimensional (2D) nanomaterials (e.g., graphene) with densely packed nanochannels has been considered as a high-efficient membrane in the osmotic power generation research field. Herein, the graphene oxide-cellulose acetate (GO–CA) heterogeneous membrane was assembled by combining a porous CA membrane and a layered GO membrane; the combination of 2D nanochannels and 3D porous structures make it show high surface-charge-governed property and excellent ion transport stability, resulting in an efficient osmotic power harvesting. A power density of about 0.13 W/m2 is achieved for the sea–river mimicking system and up to 0.55 W/m2 at a 500-fold salinity gradient. With different functions, the CA and GO membranes served as ion storage layer and ion selection layer, respectively. The GO–CA heterogeneous membrane open a promising avenue for fabrication of porous and layered platform for wide potential applications, such as sustainable power generation, water purification, and seawater desalination.  相似文献   

18.
Hassan SS  Mahmoud WH  Othman AH 《Talanta》1997,44(6):1087-1094
A novel potentiometric membrane sensor for potassium ion based on the use of rifamycin as a neutral ionophore is described. The sensing membrane is formulated with 2 wt.% rifamycin-SV, 69 wt.% dibutylsebacate plasticizer and 29 wt.% PVC. Linear and stable potential response with near-Nernstian slope of 56.7 +/- 0.2 mV decade(-1) are obtained over the concentration range 1 x 10(-1)-3 x 10(-5) M K(+). The detection limit is 0.3 microg ml(-1) K(+), the response time is 10-30 s and the working pH range is 4-11. Responses of the sensor toward alkali and alkaline earth metal ions are in the order K(+) > Rb(+) > Cs(+) > Na(+) > NH(4)(+) > Ba(2+) > Mg(2+) > Ca(2+) > Sr(2+) > Li(+). The selectivity coefficient data reveal negligible interference from transition metal ions. Direct potentiometric determination of K(+) in the presence of 10-50-fold excess of alkali and alkaline earth metals gives results with an average recovery of 99.1%, and a mean standard deviation of 1.2%. The data agree fairly well with those obtained by flame photometry.  相似文献   

19.
This paper examines the response of electrolyte-saturated polymer gels, embedded with charged spherical inclusions, to a weak gradient of electrolyte concentration. An electrokinetic model was presented in an earlier publication, and the response of homogeneous composites to a weak electric field was calculated. In this work, the influence of the inclusions on bulk ion fluxes and the strength of an electric field (or membrane diffusion potential) induced by the bulk electrolyte concentration gradient are computed. Effective ion diffusion coefficients are significantly altered by the inclusions, so-depending on the inclusion surface charge or zeta potential-asymmetric electrolytes can behave as symmetrical electrolytes and vice versa. The theory also quantifies the strength of flow driven by concentration-gradient-induced perturbations to the equilibrium diffuse double layers. Similarly to diffusiophoresis, the flow may be either up or down the applied concentration gradient.  相似文献   

20.
Masadome T  Sonoda R  Asano Y 《Talanta》2000,52(6):1123-1130
A potentiometric flow injection determination method for iodide ion in a photographic developing solution was proposed by utilizing a flow-through type iodide ion-selective electrode detector. The sensing membrane of the electrode was Ag2S–AgI membrane. The response of the electrode detector as a peak-shape signal was obtained for injected iodide ion in a photographic developing solution. A linear relationship in the subnernstian zone was found to exist between peak height and the concentration of the iodide ion in a photographic developing solution in a concentration range from 0 to 6.0×10−5 mol l−1. The relative standard deviation for ten injections of 2×10−5 mol l−1 iodide ion in a photographic developing solution was 0.96% and the sampling rate was approximately 12–13 samples h−1. The iodide ion could be determined under coexisting of an organic reducing reagent and inorganic electrolytes of high concentration in a photographic developing solution sample solution by the present method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号