首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies on foliar delta15N values, in certain bryophytes, have indicated signature similarities to source pollutants. The object of this study was to investigate the effect further, by examining the mechanisms whereby isotopic fractionation occurs in systems such as atmospheric ammonia (NH3), throughfall, vegetation and soil. Measurements taken in and around point emission sources will then be used to characterise the various fractionation effects associated with these N transformations, as well as to demonstrate some of the issues associated with using delta15N values as pollution indicators. The atmospheric dispersion model UK-ADMS has also been used to model atmospheric delta15NH3 emissions, with signatures exhibiting marked negative shifts immediately downwind of an agricultural NH3 source. Similar dispersion patterns were mapped for NH3 concentration data illustrating the link between these two forms of measurement.  相似文献   

2.
The conversion of ammonium (NH(4) (+)) to 1-sulfonato-iso-indole has been examined as a method for natural abundance measurement of delta(15)N of NH(4) (+). The reaction is complete within 2 h and is based on the derivatisation of NH(4) (+) by o-phthaldialdehyde and sodium sulfite at a high pH, 11.2. The product is readily concentrated from dilute solutions by reverse-phase solid-phase extraction (SPE). The method is compound-specific despite partial derivatisation of potentially interfering amino acids, as their derivatives are not extracted by SPE. delta(15)N values of NH(4) (+) in KCL soil extracts can be measured within 48 h by automated continuous-flow IRMS with a precision of 0.23 per thousand (1 SD). Parallel measurements of NH(4) (+) standards of known delta(15)N are made to allow correction for the isotopic dilution by non-sample NH(4) (+). The practicality of this method is demonstrated by measuring the changes in NH(4) (+) concentration and delta(15)N following the addition of urea as a nitrogen source to inorganic N-depleted soil.  相似文献   

3.
Nitrifiers and denitrifiers are the main producers of the greenhouse gas nitrous oxide (N(2)O). Knowledge of the respective contributions of each of these microbial groups to N(2)O production is a prerequisite for the development of effective mitigation strategies for N(2)O. Often, the differentiation is made by the use of inhibitors. Measurements of the natural abundance of the stable isotopes of N and O in N(2)O have been suggested as an alternative for the often unreliable inhibition studies. Here, we tested the natural abundance incubation method developed by Tilsner et al.1 with soils from four European grasslands differing in long-term management practices. Emission rates of N(2)O and stable isotope natural abundance of N(2)O and mineral N were measured in four different soil incubations: a control with 60% water-filled pore space (WFPS), a treatment with 60% WFPS and added ammonium (NH(4) (+)) to support nitrifiers, a control with 80% WFPS and a treatment with 80% WFPS and added nitrate (NO(3) (-)) to support denitrifiers. Decreases in NH(4) (+) concentrations, linked with relative (15)N-enrichment of residual NH(4) (+) and production of (15)N-depleted NO(3) (-), showed that nitrification was the main process for mineral N conversions. The N(2)O production, however, was generally dominated by reduction processes, as indicated by the up to 20 times larger N(2)O production under conditions favouring denitrification than under conditions favouring nitrification. Interestingly, the N(2)O concentration in the incubation atmospheres often levelled off or even decreased, accompanied by increases in delta(15)N and delta(18)O values of N(2)O. This points to uptake and further reduction of N(2)O to N(2), even under conditions with small concentrations of N(2)O in the atmosphere. The measurements of the natural abundances of (15)N and (18)O proved to be a valuable integral part of the natural abundance incubation method. Without these measurements, nitrification would not have been identified as essential for mineral N conversions and N(2)O consumption could not have been detected.  相似文献   

4.
Stable isotope ratios act as chemical tracers of animal diet, and are used to study food web dynamics. Because carbon stable isotope values are influenced by tissue lipid content, a number of extraction methods have been used to remove lipid bias, but, in some species and tissues, extractions also alter nitrogen isotope values. We have analyzed delta(13)C and delta(15)N in Atlantic bluefin tuna liver and white muscle, and whole Atlantic herring, fish tissues covering a wide range of lipid content (bulk C:N 3.1-12.5). In order to compare delta(13)C and delta(15)N values from traditional chloroform/methanol extractions with non-polar solvent alternatives, we analyzed samples following (1) no treatment, (2) lipid removal using chloroform/methanol (2:1), and (3) Soxhlet extractions using chloroform, diethyl ether or hexane. Chloroform/methanol and chloroform extractions produced the lowest C:N values and highest delta(13)C values. In bluefin tuna, chloroform and hexane extractions significantly altered liver delta(15)N, and all methods significantly altered delta(15)N values in white muscle. Whole Atlantic herring delta(15)N was not altered by any extraction method, while the 2:1 chloroform/methanol extraction most completely removed fish tissue lipid components. Our results indicate that delta(15)N effects are not limited to common chloroform/methanol extractions and suggest that chloroform/methanol is the most effective extraction for delta(13)C correction. Given evidence for delta(15)N alteration among all tested methods, mathematical correction approaches should be further explored as an alternative to lipid correction.  相似文献   

5.
The Fourier transform infrared and Raman spectra of di-i-propoxyphosphoryl benzylisothiourea (DPB) (1) in the solid state and in solutions of CCl4, CHCl3, CHBr3, CH2Cl2, C2H4Cl2, C2H4Br2 and THF were studied. In the IR spectra, the effects of different concentrations were also investigated. The behavior of the nu(NH), delta(NH), delta(HNH), nu(C=N) and nu(P=O) normal modes suggests the existence of a tautomerism between the phosphorylamine (I) and N-phosphorylimine (II) structures: [structures: see text] The data show the presence of different delta(NH) and delta(HNH) bendings and nu(C=N) normal modes in the solid state as a result of inter and intramolecular hydrogen bonding. The experimental approximate frequencies assignments were done for this compound, and were confirmed by a normal coordinate analysis carried out for several fragments of phosphorylamine and N-phosphorylimine structures.  相似文献   

6.
The stable isotope ratios ((13)C/(12)C, (15)N/(14)N, (18)O/(16)O, D/H) of animal feed and milk were investigated, considering cows stabled in two farms and fed with diets made up of different kinds of C(3) plants and different amounts of maize. Maize was characterised by delta(13)C, delta(18)O and deltaD values significantly higher than those of the C(3) plants, while, for the C(3) plants, Festuca arudinacea had significantly higher content of (13)C and (15)N. The delta(13)C and delta(18)O values of the overall diet and the delta(13)C of milk casein and lipids were shown to be significantly correlated with the percentage of maize in the animal diet. On the other hand, the delta(18)O values of milk water and the delta(18)O, deltaD and delta(15)N values of casein were shown to be only slightly influenced by the amount of maize in the feed, being probably more closely correlated with the geo-climatic and pedological characteristics of the area of origin and with the presence of fresh plant or silage in the ration. The delta(13)C value of casein was shown to be a suitable parameter for evaluating the amount of maize in the diet: each 10% increase in the maize content corresponded to a shift of 0.7 per thousand to 1.0 per thousand in the delta(13)C of casein. A threshold value of -23.5 per thousand for delta(13)C in milk casein, above which it is not possible to exclude the presence of maize in the diet, was suggested. The results obtained could be useful for determining mislabelling of dairy products declared to have been produced by pastured animals or of PDO cheeses with an established amount of maize in the diet and for verifying the unpermitted addition of exogenous components to milk.  相似文献   

7.
We report high resolution 15N NMR probing of the solid-solid phase transition of 15N-labeled ammonia borane (NH3BH3) at 225 K. Both the 15N isotropic chemical shift (delta iso) and the spin-lattice relaxation rate (T1-1) exhibited strong anomalies around 225 K. The analysis of T1-1 using the Bloembergen, Purcell, and Pound model showed that the motional correlation time, tau, increased from about 1 to 100 ps and the corresponding Arrhenius activation energy increased from 6 to 14.5 kJ/mol on going through the transition toward lower temperatures. The temperature dependence of delta iso was interpreted by an extension of the Bayer model. The time scale of the underlying motion was found to be in a reasonable agreement with the T1-1 data. These results imply that the NH3 rotor motion plays a pivotal role in the transition mechanism and that the transition is of both order-disorder and displacive type.  相似文献   

8.
The greenhouse gas nitrous oxide (N(2)O) can be both formed and consumed by microbial processes in the soil. As these processes fractionate strongly in favour of (14)N and (16)O, delta(15)N and delta(18)O gradients of N(2)O in the soil profile may elucidate patterns of N(2)O formation, consumption or emission to the atmosphere. We present the first in situ data of such gradients over time for a mesic typic Haplaquod seeded with potatoes (Solanum tuberosum L.). On two adjacent fields in 2002 and 2003, topsoil N(2)O fluxes were measured and the soil atmosphere was regularly sampled for N(2)O concentrations, delta(15)N and delta(18)O signatures of N(2)O at depths of 18, 48 and 90 cm during approximately 400 days. During the entire sampling period, the N(2)O concentrations were the highest and the delta(15)N signatures the lowest in the subsoil (48 or 90 cm depth) as compared with the topsoil, indicating production of N(2)O in the subsoil. For delta(15)N, differences greater than 30 per thousand between topsoil and subsoil on the same date were regularly observed. The highest N(2)O concentration of 100385 microL m(-3) at 90 cm depth on 1 July 2003, was preceded by the lowest delta(15)N value of -43.5 per thousand one week earlier. This was followed by a 150-day general decrease of N(2)O concentrations at 90 cm depth to 1723 microL m(-3) and a simultaneous enrichment of delta(15)N to +7.1 per thousand, mostly without a significant topsoil flux. There was a negative logarithmic relationship between N(2)O concentration at 90 cm depth and its delta(15)N signature. This relationship indicated a delta(15)N signature of -40 to -45 per thousand during the production of N(2)O in the subsoil, and a subsequent enrichment during the consumption of N(2)O. We conclude that the isotopic signature of the N(2)O topsoil flux is the result of various processes of consumption and production at different depths in the soil profile. It is therefore not a reliable estimator for the overall delta(15)N signature of N(2)O in the soil atmosphere, nor for indirect losses of N(2)O to the environment. Therefore, these findings will pose a further challenge to ongoing efforts to draw up a global isotopic budget for N(2)O.  相似文献   

9.
For accurate interpretation of fish trophodynamics from carbon stable isotope data it is necessary to extract tissue lipids. This is because lipid content varies within and among tissues in both space and time, and because lipids are 13C-depleted relative to proteins. However, lipid extraction may affect delta15N, thus requiring costly and time-consuming separation of delta13C and delta15N analyses. These problems have prompted the development of arithmetic correction techniques for delta13C, but the techniques and their underlying assumptions have not been systematically tested. This study compared the effects of lipid extraction and arithmetic correction techniques on delta13C and delta15N of European sea bass (Dicentrarchus labrax) tissues. Following Folch lipid extraction from muscle and liver, there was a mean increase in delta15N of 0.77 per thousand, but enrichment varied with lipid content such that effects on delta15N were hard to predict. Changes in delta13C and C:N between untreated and lipid-extracted samples reflected the quantity of lipid removed. The arithmetic correction techniques of mass balance and lipid correction were sensitive to the C:N of the lipid-extracted tissue and to the assumed depletion of lipid delta13C relative to protein delta13C. However, the mass balance approach was appropriate for the mathematical correction of bulk tissue data in most circumstances, provided that the C:N of lipid-extracted tissue could be determined for a small proportion of samples. Application of mass balance arithmetic correction can lead to significant time and cost savings in trophodynamic studies, because the majority of delta13C and delta15N analyses would not need to be run separately.  相似文献   

10.
Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a delta13C value of -26.24 per thousand relative to VPDB and a delta15N value of -4.52 per thousand relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a delta13C value of +37.76 per thousand and a delta15N value of +47.57 per thousand. The delta13C and delta15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (delta13C=+1.95 per thousand ), L-SVEC lithium carbonate (delta13C=-46.48 per thousand ), IAEA-N-1 ammonium sulfate (delta15N=0.43 per thousand ), and USGS32 potassium nitrate (delta15N=180 per thousand ) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of delta13C is better than 0.13 per thousand, and that of delta15N is better than 0.13 per thousand in 100-microg amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a delta13C value for NBS 22 oil of -29.91 per thousand, in contrast to the commonly accepted value of -29.78 per thousand for which off-line blank corrections probably have not been quantified satisfactorily.  相似文献   

11.
Residual interactions in delta131delta, a large disordered fragment of staphylococcal nuclease, have been probed at two different pHs using backbone (15)N and side-chain methyl (2)H NMR spin relaxation techniques. The amplitudes of picosecond time-scale motions of both the backbone and side chains do not change considerably at either pH value, although they are significantly larger than those observed for folded proteins. In contrast, dramatic increases in the amplitudes of motions occurring on a nanosecond time scale are observed throughout delta131delta at pH 3 relative to pH 5. This is consistent with a picture in which residual hydrophobic contacts at pH 5 are disrupted by electrostatic repulsions that dominate at the lower pH.  相似文献   

12.
We investigated the effects of sample acidification on the stable carbon and nitrogen isotopic composition (delta13C and delta15N), as well as the organic carbon (OC) and total nitrogen (TN) composition, of an algal culture and a marine sediment. Replicate measurements of untreated and acid-treated samples were made using 1 M, 2 M and 6 M HCl, 6% H2SO3 and 1 M H3PO4. For all treatments the precision of the analysis for the acid-treated sample was equal to or less than that in the non-acidified sample. For the algae, analysis of variance (ANOVA) indicated no significant differences in the mean OC and TN concentration, or delta13C and delta15N composition, between any acid treatment and non-acidified samples. For the sediment sample a comparison could only be made between the different acid treatments because the untreated contained significant amounts ( approximately 30%) of carbonate carbon. ANOVA indicated that the mean OC determined in sediment samples after the 1 M HCl treatment and the mean delta13C values after the 6% H2SO3 and 1 M H3PO4 treatments were significantly different (p < 0.013 and < .05, respectively) from all other treatments. Mass balance calculations indicate that in some instances delta13C values were biased due to a contribution from unreacted carbonate carbon. There were no significant differences in the mean TN between any acid-treated and non-acidified samples. The mean delta15N values after 6 M HCl, 6% H2SO3 and 1 M H3PO4 treatments were significantly different from the untreated sediment sample (p < 0.044). Based on the significant bias observed for the delta15N and delta13C values, a weak (1-2 M) HCl solution is confirmed as the most appropriate acid for the removal of inorganic carbon from natural materials requiring elemental and isotopic analysis.  相似文献   

13.
Pentaammineruthenium moves on ambidentate nitrogen heterocycles by both rotation and linkage isomerization, which may affect the biological activity of potential ruthenium metallopharmaceuticals. The rapid rotation rates of [(NH3)5RuIII] coordinated to the exocyclic nitrogens of isocytosine (ICyt) and 6-methylisocytosine (6MeICyt) have been determined by 1H NMR. Since these rotamers can be stabilized by hydrogen bonding between the coordinated ammines and the N1 and N3 endocyclic nitrogens, rotamerization is under pH control. Spectrophotometrically (UV-vis) measured pKa values for the two endocyclic sites for the ICyt complex are 2.78 and 9.98, and for 6MeICyt are 3.06 and 10.21, which are probably weighted averages for ionization from N3 and N1, respectively. Activation parameters for the rotamerizations were determined by variable-temperature NMR at pKa1 < pH < pKa2 for the complexes with (ICyt-kappa N2)-, (6MeICyt kappa N2)-, and 2AmPym kappa N2. For [(6MeICyt kappa N2)(-)-(NH3)5RuIII]2+, delta H* = 1.6 kcal/mol, delta S* = -37 cal/mol K, and Ea = 2.2 kcal/mol. Due to strong RuIII-N pi-bonding, the activation enthalpies are approximately 10 kcal lower than the expected values for the free ligands. Rotameric structure is correlated with pKa values, pH-dependent reduction potentials, and 1H NMR parameters. Linkage isomers of [(2AmPym)(NH3)5Ru]n+ are reported in which RuII is coordinated to the endocyclic nitrogen (N1) and RuIII to the exocyclic nitrogen (N2). The rate constant for the kappa N2-->kappa N1 isomerization as part of an ECE mechanism is 3.9 s-1 at pH 3. The pH dependence of the acid-catalyzed hydrolysis of [(2AmPym kappa N1)(NH3)5Ru]2+ is determined.  相似文献   

14.
Many Salmo trutta populations consist of non-anadromous (freshwater-resident) brown trout and anadromous (sea-run migratory) sea trout. Although adult brown trout and sea trout can usually be identified using differences in size and body colouration, it is not possible to easily identify eggs/alevins as the progeny of brown trout or sea trout. In this study we show that delta(13)C and delta(15)N, measured using a continuous flow isotope ratio mass spectrometer (CF-IRMS), can accurately identify fish eggs as the progeny of freshwater-resident (delta(13)C(egg) = -25.7 +/- 1.9 per thousand,delta(15)N(egg) = 9.2 +/- 1.8 per thousand) or migratory (delta(13)C(egg) = -19.9 +/- 1.1 per thousand, delta(15)N(egg) = 14. 3 +/- 1.5 per thousand) adult female Salmo trutta. Case studies show that stable isotope analysis is a more reliable technique for distinguishing anadromous adult fish than differentiation using morphological characteristics. For example, stable isotope analysis of brown trout from Loch Eck, Scotland, revealed that some individuals possessed delta(13)C and delta(15)N signatures indicative of marine feeding despite visual identification as freshwater-resident fish. It is most likely that these fish are misidentified sea trout although it possible that these fish may be brown trout that have adopted an estuarine feeding strategy to avoid interspecific competition for food within Loch Eck with salmon, powan and Arctic charr. Most stable isotope studies of fish ecology use terminal tissue sampling to provide sufficient biological material for isotopic analysis; however, our study suggests that adipose fin tissue could provide a comparable measure of delta(13)C and delta(15)N. Such a strategy would be invaluable when studying the trophic ecology or migration patterns of fish of high conservation value.  相似文献   

15.
The Broadbalk Wheat Experiment at Rothamsted Research in the UK provides a unique opportunity to investigate the long-term impacts of environmental change and agronomic practices on plants and soils. We examined the influence of manure and mineral fertiliser applications on temporal trends in the stable N ((15)N) and C ((13)C) isotopes of wheat collected during 1968-1979 and 1996-2005, and of soil collected in 1966 and 2000. The soil delta(15)N values in 1966 and 2000 were higher in manure than the mineral N supplied soil; the latter had similar or higher delta(15)N values than non-fertilised soil. The straw delta(15)N values significantly decreased in all N treatments during 1968 to 1979, but not for 1996-2005. The straw delta(15)N values decreased under the highest mineral N supply (192 kg N ha(-1) year(-1)) by 3 per thousand from 1968 to 1979. Mineral N supply significantly increased to straw delta(13)C values in dry years, but not in wet years. Significant correlations existed between wheat straw delta(13)C values with cumulative rainfall (March to June). The cultivar Hereward (grown 1996-2005) was less affected by changes in environmental conditions (i.e. water stress and fertiliser regime) than Cappelle Desprez (1968-1979). We conclude that, in addition to fertiliser type and application rates, water stress and, importantly, plant variety influenced plant delta(13)C and delta(15)N values. Hence, water stress and differential variety response should be considered in plant studies using plant delta(13)C and delta(15)N trends to delineate past or recent environmental or agronomic changes.  相似文献   

16.
New evidence, obtained using a robust method for measuring the delta(15)N of NO(3)(-)-N in soil, is consistent with denitrification being the major determinant in the vertical distribution of NO(3)(-)-delta(15)N in soil profiles. These data also suggest that varying moisture regimes result in different effects of soil NO(3)(-)-N leaching on residual whole soil delta(15)N.  相似文献   

17.
Nitrous oxide (N2O), a greenhouse gas, is mainly emitted from soils during the nitrification and denitrification processes. N2O stable isotope investigations can help to characterize the N2O sources and N2O production mechanisms. N2O isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of N2O emitted from Antarctic tundra ecosystems have been reported although the coastal ice-free tundra around Antarctic continent is the largest sea animal colony on the global scale. Here, we report for the first time stable isotope composition of N2O emitted from Antarctic sea animal colonies (including penguin, seal and skua colonies) and normal tundra soils using in situ field observations and laboratory incubations, and we have analyzed the effects of sea animal excrement depositions on stable isotope natural abundance of N2O. For all the field sites, the soil-emitted N2O was 15N- and 18O-depleted compared with N2O in local ambient air. The mean delta values of the soil-emitted N2O were delta15N = -13.5 +/- 3.2 per thousand and delta18O = 26.2 +/- 1.4 per thousand for the penguin colony, delta15N = -11.5 +/- 5.1 per thousand and delta18O = 26.4 +/- 3.5 per thousand for the skua colony and delta15N = -18.9 +/- 0.7 per thousand and delta18O = 28.8 +/- 1.3 per thousand for the seal colony. In the soil incubations, the isotopic composition of N2O was measured under N2 and under ambient air conditions. The soils incubated under the ambient air emitted very little N2O (2.93 microg N2O--N kg(-1)). Under N2 conditions, much more N2O was formed (9.74 microg N2O--N kg(-1)), and the mean delta15N and delta18O values of N2O were -19.1 +/- 8.0 per thousand and 21.3 +/- 4.3 per thousand, respectively, from penguin colony soils, and -17.0 +/- 4.2 per thousand and 20.6 +/- 3.5 per thousand, respectively, from seal colony soils. The data from in situ field observations and laboratory experiments point to denitrification as the predominant N2O source from Antarctic sea animal colonies.  相似文献   

18.
Both NMR spectroscopic parameters are calculated as a function of the distance d(N-H) of the O...H...N subsystem of (un- or Z-) substituted ortho-hydroxyaryl Schiff bases, with Z = 4-OMe and 5-Cl. Typical patterns for NMR J couplings and magnetic shieldings, sigma(N) (or the chemical shift delta(N)), are obtained showing that they are reliable sensors from which one can get a deeper insight on the intramolecular proton transfer mechanism. An inflection point is found by representing each NMR spectroscopic parameter as a function of d(N-H) or when the correlation between both parameters is depicted. The analysis of these (cubic) functions shows whether the proton is bound to the oxygen or to the nitrogen atom or is shared by both atoms. In line with these findings, it is possible to predict the position of the proton in the bridge. These theoretical findings are supported by previous experimental measurements. It is shown that nitrogen chemical shift is quite sensitive to substituent effects though (1) J( (15)NH) is not. This last parameter depends on d(NH). When correlating both spectroscopic parameters, a previous delta(N) vs (1) J( (15)NH) linear dependence is generalized to a cubic dependence which seems to be more reliable. Calculations are based on two state of the art methodologies: DFT-B3LYP and polarization propagators at second order of approach (SOPPA) with large enough basis sets.  相似文献   

19.
Objective chemical biomarkers are needed in clinical studies of diet-related diseases to supplement subjective self-reporting methods. We report on several critical experiments for the development of clinically legitimate dietary stable isotope biomarkers within human blood. Our examination of human blood revealed the following: (1) Within blood clot and serum from anonymous individuals (201 males, 205 females) we observed: mean serum delta13C = -19.1 +/- 0.8 per thousand (standard deviation, SD); clot, -19.3 +/- 0.8 per thousand (SD); range = -15.8 per thousand to -23.4 per thousand. Highly statistically significant differences are observed between clot and serum, males and females for both clot and serum. For 15N (n = 206), mean serum = +8.8 +/- 0.5 per thousand (SD); clot +7.4 +/- 0.4 per thousand (SD); range = +6.3 per thousand to +10.5 per thousand. Blood serum is enriched in 15N relative to blood clot by +1.4 per thousand on average, which may reflect differing protein amino acid content. Serum nitrogen is statistically significantly different for males and females, however, clot shows no statistical difference. (2) Relative to clot, capillary blood is marginally different for 13C, but not 15N. Clot 13C is not significantly different from serum; however, it is depleted in 15N by 1.5 per thousand relative to serum. (3) We assessed the effect of blood additives (sodium fluoride and polymerized acrylamide resin) and laboratory process (autoclaving, freeze drying) commonly used to preserve or prepare venous blood. On average, no alteration in delta13C or delta15N is detected compared with unadulterated blood from the same individual. (4) Storage of blood with and without the additives described above for a period of up to 115 days exhibits statistically significant differences for 13C and 15N for sodium fluoride. However, storage for unadulterated blood and blood preserved with polymerized acrylamide resin does not change the delta13C or delta15N isotopic composition of the blood in a significant way. With these experiments, we gain a clinical context for future development of a stable isotope based dietary biomarker.  相似文献   

20.
Carbon (13C/12C) and nitrogen (15N/14N) stable isotope ratios were longitudinally measured in human hair that reflected the period from pre-conception to delivery in 10 pregnant women. There was no significant change in the delta13C results, but all subjects showed a decrease in delta15N values (-0.3 to -1.1 per thousand) during gestation. The mechanisms causing this decrease in hair delta15N have not been fully elucidated. However, since the delta15N values of dietary nitrogen and urea nitrogen are significantly lower compared to maternal tissues, it is hypothesized that the increased utilization of dietary and urea nitrogen for tissue synthesis during pregnancy resulted in a reduction of the steady state diet to a body trophic level effect by approximately 0.5-1 per thousand. An inverse correlation (R2 = 0.67) between hair delta15N and weight gain was also found, suggesting that positive nitrogen balance results in a reduction of delta15N values independent of diet. These results indicate that delta15N measurements have the ability to monitor not only dietary inputs, but also the nitrogen balance of an organism. A potential application of this technique is the detection of fertility patterns in modern and ancient species that have tissues that linearly record stable isotope ratios through time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号