首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat capacity of tripeptide diglycylglycine was measured in a temperature range from 6.5 to 304 K. The results were compared with those for glycine and glycylglycine. Peptide bonding was found not to change C P(T) virtually above 70 K, where heat capacity does not obey the Debye model. Comparison with literature data allows one to expect a significant difference in the heat capacity for enantiomorph and racemic species of valine and leucine, like it was found recently for D-and DL-serine.  相似文献   

2.
Dysprosium hafnate is a candidate material for as control rods in nuclear reactor because dysprosium (Dy) and hafnium (Hf) have very high absorption cross-sections for neutrons. Dysprosium hafnate (Dy2O3·2HfO2-fluorite phase solid solution) was prepared by solid-state as well as wet chemical routes. The fluorite phase of the compound was characterized by using X-ray diffraction (XRD). Thermal expansion characteristics were studied using high temperature X-ray diffraction (HTXRD) in the temperature range 298–1973 K. Heat capacity measurements of dysprosium hafnate were carried out using differential scanning calorimetry (DSC) in the temperature range 298–800 K. The room temperature lattice parameter and the coefficient of thermal expansion are 0.5194 nm and 7.69 × 10−6 K−1, respectively. The heat capacity value at 298 K is 232 J mol−1 K−1.  相似文献   

3.
Synthetic enstatite MgSiO3 was crystallized from a melt, quenched into water, and then annealed at 873 K. The product is the monoclinic polymorph with the unit cell parameters of a=0.9619(7), b=0.8832(3), c=0.5177(4) nm, β=108.27(5)°. Heat capacity was measured from 6 to 305 K using an adiabatic vacuum calorimeter. Thermodynamic functions for clinoenstatite differ by about 5% from those predicted after a thermodynamic model in the literature, but are very close to those measured for orthorhombic enstatite.  相似文献   

4.
Journal of Thermal Analysis and Calorimetry - The thermodynamics data of crystalline states of two representative components in blood sugar, d-glucose and d-fructose, are significant in researching...  相似文献   

5.
Heat capacity of crystalline L- and DL-phenylglycines was measured in the temperature range from 6 to 305?K. For L-phenylglycine, no anomalies in the C p (T) dependence were observed. For DL-phenylglycine, however, an anomaly in the temperature range 50?C75?K with a maximum at about 60?K was registered. The enthalpy and the entropy changes corresponding to this anomaly were estimated as 20?J?mol?1 and 0.33?J?K?1 mol?1, respectively. In the temperature range 205?C225?K, an unusually large dispersion of the experimental points and a small change in the slope of the C p (T) curve were noticed. Thermodynamic functions for L- and DL-phenylglycines in the temperature range 0?C305?K were calculated. At 298.15?K, the values of heat capacity, entropy, and enthalpy are equal to 179.1, 195.3?J?K?1 mol?1, and 28590?J?mol?1 for L-phenylglycine and 177.7, 196.3?J?K?1 mol?1 and 28570?J?mol?1 for DL-phenylglycine. For both L- and DL-phenylglycine, the C p (T) at very low temperatures does not follow the Debye law C ?C T 3 . The heat capacity C p (T) is slightly higher for L-phenylglycine, than for the racemic DL-crystal, with the exception of the phase transition region. The difference is smaller than was observed previously for the L-/DL-cysteines, and considerably smaller, than that for L-/DL- serines.  相似文献   

6.
An outline for the data analysis of single-run heat capacity measurments by dual sample DSC is presented with the following features: 1. Heat flow correction by subtracting the contribution due to the sample pan, including correction for mismatched pan masses. 2. Heat flow and temperature correction with a nonlinear temperature calibration, temperature lag correction, and heating rate correction. 3. Calculation of the cell constants for both cell positions and evaluation of the asymmetry factor between cell positions A and B. 4. Heat capacity calibration and calculation with slope and asymmetry correction. 5. Calculation of heat capacity for multiple runs. 6. Data curve fitting for heat capacity.This work was supported by the Division of Materials Research, National Science Foundation, Polymers Program, Grant # DMR 8818412 and the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. Thanks are given to TA Instruments, Inc. (New Castle, DE) for providing the commercial heat capacity software and helping with the acquisition of the calorimeter.  相似文献   

7.
Journal of Thermal Analysis and Calorimetry - As a universal feature of glass, its low-energy inelastic scattering spectra show a broad response known as the boson peak (BP). Since the BP is the...  相似文献   

8.
Heat capacity measurements have been made on the two triclinic tungstates, Li0.2WO3 and Na0.33WO3 from 1 to 60 K. In addition to the normal Debye term the data show a large contribution which can be fit to a single Einstein mode associated with the oscillation of the alkali ions in the holes formed by the corner bonding of six WO6 octahedra. The Einstein characteristic temperatures obtained are 71 ± 2 and 78 ± 2 K for Li0.2WO3 and Na0.33WO3, respectively. The results are compared with those reported earlier for the hexagonal tungsten bronzes.  相似文献   

9.
Low-temperature heat capacity of two polymorphs of glycine (α and γ) was measured from 5.5 to 304 K and thermodynamic functions were calculated. Difference in heat capacity between polymorphs ranges from +26% at 10 K to -3% at 300 K. The difference indicates the contribution into the heat capacity of piezoelectric γ polymorph, probably connected with phase transition and ferroelectricity. Thermodynamic evaluations show that at ambient conditions γ polymorph is stable and α polymorph is metastable. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Light metal alloys, as aluminium- and titanium based alloys, are of great interest to aerospace industry but thermodynamic information, mainly heat capacity, is often missing. Then we measured on heating the heat content of seven industrial titanium alloys from room temperature to 600°C with the help of a high-temperature Calvet calorimeter (drop method). Their heat capacities were deduced by derivation of the enthalpy with respect to temperature. The departures from Kopp-Neuman law were calculated.  相似文献   

11.
Heat capacity of stoichiometric homogeneous spinel MgFe2O4 was measured from 5 to 305 K and thermodynamic functions were derived for temperatures up to 725 K using our previous high-temperature experimental data for the same sample. Anomaly in C p was found at very low temperatures. Experimental data below 20 K contain large (up to 25% near 5 K) error arising from the difference in the thermal history between the experimental series. Magnetic contribution to the low-temperature heat capacity was tested, and the linear function was found to fit experimental data better than the three-halves power derived from the spin-wave theory.  相似文献   

12.
As one 3-D coordination polymer, lead formate was synthesized; calorimetric study and thermal analysis for this compound were performed. The low-temperature heat capacity of lead formate was measured by a precise automated adiabatic calorimeter over the temperature range from 80 to 380 K. No thermal anomaly or phase transition was observed in this temperature range. A four-step sequential thermal decomposition mechanism for the lead formate was found through the DSC and TG-DTG techniques at the temperature range from 500 to 635 K.  相似文献   

13.
Thermal expansivities of liquid mixtures of 1-hexanol and 1-hexanamine have been determined as a function of pressure up to 400 MPa over the temperature range from 303 to 453 K. Measurements were performed in a pressure-scanning calorimeter by the stepwise technique. Compressibilities of the mixtures under study were determined at 303 K using the technique described before. Molar volumes under atmospheric pressure were determined for each mixture from the density measurements with a Paar instrument. From both the molar volume as a function of pressure at 303 K and the thermal expansivities the effects of pressure on the isobaric heat capacity were determined over the whole pressure and temperature range under study.
Zusammenfassung Im Temperaturbereich 303–453 K wurde der thermische Ausdehungskoeffizient flüssiger Gemische aus 1-Hexanol und 1-Aminohexan als Funktion des Druckes bis 400 MPa bestimmt. Die Messungen wurden in einem Druck-Scanningkalorimeter nach der Schritt-für-Schritt-Methode ausgeführt. Die Kompressibilität der untersuchten Gemische wurde bei 303 K mittels der bereits beschriebenen Methode bestimmt. Mittels Dichtemessungen in einem Paar-Gerät wurde für jedes Gemisch das molare Volumen bei Atmosphärendruck ermittelt. Anhand der Druckabhängigkeit des molaren Volumens bei 303 K sowie der thermischen Ausdehnungskoeffizienten wurde der Einflu\ des Druckes auf die isobare Wärmekapazität im gesamten untersuchten Druck- und Temperaturintervall bestimmt.
  相似文献   

14.
Modulated differential scanning calorimetry (MDSC) uses an abbreviated Fourier transformation ?r the data analysis and separation of the reversing component of the heat flow and temperature signals. In this paper a simple spread-sheet analysis will be presented that can be used to better understand and explore the effects observed in MDSC and their link to actual changes in the instrument and sample. The analysis assumes that instrument lags and other kinetic effects are either avoided or corrected for.  相似文献   

15.
邸友莹  李爽  孟霜鹤  谭志诚  屈松生 《化学学报》2000,58(11):1380-1385
通过精密自动绝热热量计测定了2-碘-3-硝基甲苯(C~7H~6INO~2)在79~373K温区的摩尔热容。实验结果表明,这个化合物在331~340K温度区间有一个固-液熔化相变,其熔化温度、摩尔熔化焓、摩尔熔化熵以及该样品的化学纯度分别为:(339.311±0.13)J·mol^-^1·K^-^1和99.73%。用热容多项式议程进行数值积分获得了该物质在298.15~370K温区每隔5K的热力学函数值。用DSC分析对它的固-液相变过程作了进一步的研究。  相似文献   

16.
The temperature dependence of the heat capacity C p o = f(T) of palladium oxide PdO(cr.) was studied for the first time in an adiabatic vacuum calorimeter in the range of 6.48–328.86 K. Standard thermodynamic functions C p o(T), H o(T) — H o(0), S o(T), and G o(T) — H o(0) in the range of T → 0 to 330 K (key quantities in different thermodynamic calculations with the participation of palladium compounds) were calculated on the basis of the experimental data. Based on an analysis of studies on determining the thermodynamic properties of PdO(cr.), the following values of absolute entropy, standard enthalpy, and Gibbs function of the formation of palladium oxide are recommended: S o(298.15) = 39.58 ± 0.15 J/(K mol), Δf H o(298.15) = −112.69 ± 0.32 kJ/mol, Δf G o(298.15) = −82.68 ± 0.35 kJ/mol. The stability of Pd(OH)2 (amorph.) with respect to PdO(cr.) was estimated.  相似文献   

17.
18.
The heat capacity obtained below 30 K for the tetramethylsilane monolayers, which are adsorbed either on graphite or on the (100) surface of MgO, is analyzed to investigate the vibrational properties. The 2-D Debye temperatures are approximately 60% of the Debye temperature of the bulk solid (γ -phase), reflecting the dimensionality of lattice vibrations. The contributions from the vibrations perpendicular to the surface as well as the librational motions are determined by fitting the experimental heat capacities. All the results are consistent with those obtained from the incoherent inelastic neutron scattering and the molecular dynamics simulation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Endo-Tricyclo[5.2.1.02,6]decane (CAS 6004-38-2) is an important intermediate compound for synthesizing diamantane. The lack of data on the thermodynamic properties of the compound limits its development and application. In this study, endo-Tricyclo[5.2.1.02,6]decane was synthesized and the low temperature heat capacities were measured with a high-precision adiabatic calorimeter in the temperature range from (80 to 360) K. Two phase transitions were observed: the solid-solid phase transition in the temperature range from (198.79 to 210.27) K, with peak temperature 204.33 K; the solid-liquid phase transition in the temperature range from 333.76 K to 350.97 K, with peak temperature 345.28 K. The molar enthalpy increments, ΔHm, and entropy increments, ΔSm, of these phase transitions are ΔHm=2.57 kJ · mol−1 and ΔSm=12.57 J · K−1 · mol−1 for the solid-solid phase transition at 204.33 K, and, ΔfusHm=3.07 kJ · mol−1 and ΔfusSm=8.89 J · K−1 · mol−1 for the solid-liquid phase transition at 345.28 K. The thermal stability of the compound was investigated by thermogravimetric analysis. TG result shows that endo-Tricyclo[5.2.1.02,6]decane starts to sublime at 300 K and completely changes into vapor when the temperature reaches 423 K, reaching the maximal rate of weight loss at 408 K.  相似文献   

20.
Heat capacity is among the most important thermodynamic characteristics of a substance. The behaviour of the heat capacity is well understood in gases and crystals, but not in liquids. A common view on the heat capacity of liquids is that it should be close to the solid-like values close to the melting line and it should approach the gas values in the limit of high temperatures. However, some liquids can show anomalously high magnitudes of isochoric heat capacity. In the present paper, I show that core-softened liquids can demonstrate unusually high magnitude of the heat capacity induced by a structural crossover of the liquid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号