首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
It was found that Fe3O4 nanoparticles (Fe3O4 NPs) possess intrinsic enzyme mimetic activity similar to that found in natural peroxidase. Here, we applied Fe3O4 NPs to the construction of efficient electrochemical sensor to detect the concentration of hydrogen peroxide. The sensor was fabricated with layer-by-layer assembly of Fe3O4 NPs and poly(diallyldimethylammonium chloride) (PDDA) through the electrostatic interaction, and the multilayer film was characterized with UV–vis absorption spectra, atomic force microscopy, and cyclic voltammetry. Moreover, the sensor showed prominent electrocatalytic activity toward the reduction of H2O2, and the interferences of ascorbic acid (AA) and uric acid (UA) were completely avoided. Unlike the inherent instability of enzyme, Fe3O4 NPs-based sensor demonstrated outstanding stability.  相似文献   

2.
The voltammetric (CV and DPV) behavior of multi-walled carbon nanotube/Nafion composite coupled with a glassy carbon electrode was investigated for the determination of 2,4-dichlorophenol. The structural and morphological evaluation by XRD and FESEM revealed that the acid treated MWCNT retained their morphology without any structural change. The existence of the possible functional groups was investigated by FTIR and Raman spectroscopy. Compared to bare GCE, a significantly reduced interfacial charge transfer resistance was noticed for MWCNT/Nafion/GCE by electrochemical impedance spectroscopy (EIS). The use of Nafion not only contributed to the non-covalent functionalization of MWCNT, but also protected the electrode surface against the polymerization of phenoxy radicals forming a passivating film. For MWCNT/Nafion/GCE, the combination of anti-passivating ability and excellent catalytic properties resulted in the rapid and direct electrochemical determination of 2,4-DCP. Under optimal experimental conditions, the DPV responses for MWCNT/Nafion/GCE is linear over the 1–150 μmol/L range with a detection limit (S/N = 3) of 0.01 μmol/L. The presence of many interfering species had no influence on the signals of 2,4-DCP. The proposed sensor was successfully tested for the determination of 2,4-DCP in tap water samples and the recovery was in the range of 99.0–102.5%.  相似文献   

3.
A polyaniline (PANI)/carbon nanotubes (CNTs) composite modified electrode was fabricated by galvanostatic electropolymerization of aniline on multi-walled carbon nanotubes (MWNTs)-modified gold electrode. The electrode thus prepared exhibits enhanced electrocatalytic behavior to the reduction of nitrite and facilitates the detection of nitrite at an applied potential of 0.0 V. Although the amperometric responses toward nitrite at MWNTs/gold and PANI/gold electrodes have also been observed in the experiments, these responses are far less than that obtained at PANI/MWNTs/gold electrode. The effects of electropolymerization time, MWNTs concentration and pH value of the detection solution on the current response of the composite modified electrode toward sodium nitrite, were investigated and discussed. A linear range from 5.0 × 10−6 to 1.5 × 10−2 M for the detection of sodium nitrite has been observed at the PANI/MWNTs modified electrode with a sensitivity of 719.2 mA M−1 cm−2 and a detection limit of 1.0 μM based on a signal-to-noise ratio of 3.  相似文献   

4.
A novel type of palladium nanoparticles-modified multiwalled carbon nanotubes composite-electrode with electrocatalytic activity for oxygen reduction is presented. The nanocomposite was prepared by magnetron sputtering deposition with Pd in Ar atmosphere on MWNTs, which were synthesized on Ta plates by chemical vapor deposition. Both scanning electron microscopy and transmission electron microscopy were employed to observe the surface morphology. The Pd nanoparticles, with diameters around 5 nm, are dispersed at the tips and on the sidewalls of the MWNTs. Voltammetry, amperometry and electrochemical impedance measurements were used to demonstrate the strong electrocatalytic activity of the nanocomposite in acid solution. Compared to the bare MWNT electrode, the PdNPs/MWNT nanocomposite shows a positive shift of the O2 reduction current at onset potentials from +400 to +500 mV, a concurrent 1.5-fold increase in the O2 reduction peak current with high stability. The successful preparation of PdNPs/MWNTs nanocomposite by magnetron sputtering deposition opens a new path for an efficient dispersion of promising nanoparticles for fuel cells and O2 sensors.  相似文献   

5.
Electrochemical reduction of CO2(CERR)to value-added chemicals is an attractive strategy for greenhouse gas mitigation,and carbon recycles utilization.Conventional metal catalysts suffered from low durability and sluggish kinetics impede the practical application.On the other hand,doped carbon materials recently demonstrate superior catalytic performance in CERR,which shows the potential to diminish the problems of metal catalysts to some extent.Herein,we present the design and fabrication of nitrogen(N),phosphorus(P)co-doped metal-free carbon materials as an efficient and stable electrocatalyst for reduction of CO2 to CO,which exhibits an excellent performance with a high faradaic efficiency of 92%(-0.55 V vs.RHE)and up to 24 h stability.A series of characterizations including TEM and XPS verified that nitrogen and phosphorous are successfully incorporated into the carbon matrix.Moreover,the comparisons between co-doping and single doping catalysts reveal that co-doping can significantly increase CERR performance.The improved catalytic activity is attributed to the synergetic effects between nitrogen and phosphorous dopants,which effectively modulate properties of the active site.The density functional theory(DFT)calculations were also performed to understand the synergy effects of dopants.It is revealed that the phosphorous doping can significantly lower the Gibbs free energy of COOH*formation.Moreover,the introduction of the second dopants phosphorous can reduce the reaction barrier along the reaction path and cause polarization of density of states at the Fermi level.These changes can greatly enhance the activity of the catalysts.From a combined experimental and computational exploration,current work provides valuable insights into the reaction mechanism of CERR on N,P co-doped carbon catalysts,and the influence from synergy effects between dopants,which paves the way for the rational design of novel metal-free catalysts for CO2 electro-reduction.  相似文献   

6.
We present a newly devised technique, the dynamic layer-by-layer (LbL) deposition method, that is designed to take advantage of the LbL deposition method and fluidic devices. Polyelectrolyte solutions are sequentially injected through the fluidic LbL deposition device to quickly build well-defined multilayer films on a selected region with a linear increase in the material deposited. Multilayer film fabrication by this new method on a specific region was proven to be fast and effective. The effects on film quality of the processing parameters such as concentration of polyelectrolytes, flow rate, and contact time were investigated. A half-tethered self-standing film on a substrate was fabricated to demonstrate the effectiveness and the region-selective deposition capability of the devised dynamic LbL deposition method.  相似文献   

7.
8.
van der Waals layer-by-layer construction of a carbon nanotube 2D network   总被引:1,自引:0,他引:1  
The acid-treated single-walled carbon nanotubes (SWCNTs) dispersed in water are only kinetically stable with electrostatic double layer repulsions just balancing against van der Waals (VDW) attractions. Introducing any external factor to disturb this balance causes immediate coagulation of SWCNTs. Here, an amine-covered flat substrate was immersed in the dispersion to initiate adsorption of SWCNTs onto the substrate surface. By repeating an adsorption-rinse-dry cycle, it was possible to deposit SWCNT bundles in a layer-by-layer fashion and to develop a 2D network consisting only of SWCNTs that are held by VDW interaction. We show that (1) adsorbed solution-grown aggregates are not relevant for the network connectivity, (2) 2D percolation takes place at very low surface coverage, (3) the electrical resistivity follows a power law against the layering cycles, (4) not only the adsorbed amount but also the added amount per layering cycle increases linearly with the SWCNT concentration, and (5) after the adsorption is initiated by amines, VDW attraction takes over for subsequent adsorption, with the consequence that the newly adsorbed SWCNTs are used to thicken each arm of the network rather than to cover more free surfaces.  相似文献   

9.
A kind of nanocomposite with good dispersion in water was prepared through noncovalent adsorption of iron picket-fence porphyrin (FeTMAPP), iron-5,10,15,20-tetrakis[αααα-2-trismethylammoniomethyl-phenyl]porphyrin, on multiwalled carbon nanotubes (MWNTs). UV–visible spectroscopic and electrochemical methods were used to characterize the nanocomposite. A gold nanoparticles/nanocomposite self-assembled monolayer was formed on gold electrode and showed highly synergetic behavior towards the electrocatalytic reduction of O2 with a decrease of overpotential of 200 mV. FeTMAPP acted as the catalytic active center, and MWNTs increased the amount of FeTMAPP adsorbed and accelerated the electron transfer between FeTMAPP and electrode. The resulting biosensor exhibited good response to oxygen with a linear range from 0.52 to 180 μM and a detection limit of 0.38 μM, without the interference of ascorbic acid and uric acid, which showed an application potential of the proposed nanocomposite and monolayer in detection of dissolved oxygen and oxidase substrates.  相似文献   

10.
The ordered ultrathin film based on iron(III) porphyrin and Co–Al layered double hydroxide (Co–Al LDH) nanosheets has been fabricated via the layer-by-layer (LBL) method. The film modified electrode demonstrates a couple of well-defined reversible redox peaks attributed to Co(III)/Co(II), with iron(III) porphyrin serving as an efficient mediator for facilitating the electron transfer. Furthermore, it exhibits excellent electrocatalytic behavior for H2O2 with a wide linear range of response, high sensitivity and low detection limit.  相似文献   

11.
Metal-free,heteroatom functionalized carbon-based catalysts have made remarkable progress in recent years in a wide range of applications related to energy storage and energy generation.In this study,high surface area mesoporous ordered sulphur doped carbon materials are obtained via one-pot hydrothermal synthesis of carbon/SBA-15 composite after removal of in-situ synthesized hard template Si O2.2-thiophenecarboxy acid as sulphur source gives rise to sulphur doping level of 5.5 wt%.Comparing with pristine carbon,the sulphur doped mesoporous ordered carbon demonstrates improved electro-catalytic activity in the oxygen reduction reaction in alkaline solution.  相似文献   

12.
蔡雅芝  陶李  黄根  张娜娜  邹雨芹  王双印 《催化学报》2021,42(6):938-944,中插1-中插5
氧的电催化还原反应是燃料电池装置与金属空气电池的阴极反应, 具有重大的研究意义. 在众多的非铂催化剂中,碳材料因其低廉的价格以及独特的物理化学性质受到了广泛的关注. 自从发现氮掺杂的碳纳米阵列具有优异的氧还原活性后, 不同类型的氮掺杂的碳也得到了深入研究. 例如近年来兴起的由金属有机框架衍生的氮掺杂的碳材料, 兼具丰富...  相似文献   

13.
Although nitrogen doped CNTs (N-CNTs) are considered as a promising alternative to platinized carbon for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs), the origin of the enhanced ORR activity with N-CNTs is not clear at present. Among several plausible reasons, the exposure of edge plane and creation of impurity band/surface states near the Fermi level are considered as major causes behind the catalytic activity. However, CNTs without nitrogen doping are not known to catalyze the ORR. In this work, we study the ORR activity of functionalized carbon nanotubes with different functional groups, such as sulfonic acid and phosphonic acid, in order to understand the role of surface functionalities in catalyzing the reaction. Functionalized CNTs show significantly enhanced activity towards the ORR, while CNTs without such surface functional groups do not reveal any such special ORR activity. Linear sweep voltammetry experiments with different rotation rates show diffusion controlled limiting current values for functionalized CNTs, and the 'n' values derived from Koutecky-Levich plots are 3.3 and 1.7 for S-MWCNTs and P-MWCNTs, respectively. This work demonstrates the ORR activity of functionalized MWCNTs, which opens up new strategies for electrocatalyst design in PEMFCs.  相似文献   

14.
Yi Wang  Mi Yi  Kun Wang  Shuqin Song 《催化学报》2019,40(4):523-533
Hydrogen peroxide (H2O2) is a very useful chemical reagent, but the current industrial methods for its production suffer from serious energy consumption problems. Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction (ORR) through a two-electron (2e?) pathway is a very promising route to produce H2O2. In this work, we obtained partially oxidized multi-walled carbon nanotubes (MWCNTs) with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40°C for 1 h (O-CNTs-40-1). The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups, while the inner layers are maintained intact. The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity. The results of rotating ring disk electrode measurements reveal that, among all oxidized MWCNTs, O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity (from ~ 30% to ~ 50%) and electron transfer number (from ~ 3.4 to ~ 3.0) compared to those of the raw MWCNTs. The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs. Finally, direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.  相似文献   

15.
Electrically conducting polypyrrole (PPy) film doped with silicomolybdate (SiMo12 or SiMo12) was synthesized by electrochemical polymerization. The synthesized film is capable of fast charge propagation during redox reactions in strong acid medium 0.2 M H2SO4 solution. Electrochemical quartz crystal microbalance was used to study the mechanism and amount of SiMo12 doped in the PPy matrix. The modified electrode surface was characterized by using atomic force microscope technique, and it was found that the minimum and maximum globule size were estimated to be in the range of 50–200 nm. The thickness of film was measured to be approximately 30 ± 10 nm. The modified electrode shows electrocatalytic activity towards reduction of Cr(VI) and periodate. The rate constant and optimal film thickness were determined for electrocatalytic reduction of Cr(VI) by using rotating disc electrode experiment. Analytical characterization of the SiMo12 doped PPy film modified electrode was demonstrated by flow injection analysis (FIA) technique and shows good stability for 16 continuous injections for Cr(VI) reduction with RSD of 1.6%.  相似文献   

16.
《中国化学快报》2021,32(9):2833-2836
We report the fabrication of highly ordered Nb2O5 nanochannel film (Nb2O5-NCF) onto niobium foil by an anodization method. After thermal treatment, the obtained Nb2O5-NCF with rich oxygen vacancies exhibits electrochemical N2 reduction reaction (NRR) activity with an NH3 yield rate of 2.52 × 10−10 mol cm-2 s-1 and a faradaic efficiency of 9.81% at −0.4 V (vs. RHE) in 0.1 mol/L Na2SO4 electrolyte (pH 3.2). During electrocatalytic NRR, the Nb2O5-NCF takes place electrochromism (EC), along with a crystalline phase transformation from pseudo hexagonal phase to hexagonal phase owing to H+ insertion. This results in the reduced NRR activity due to the decrease of oxygen vacancies of hexagonal phase Nb2O5, which can be readily regenerated by low-temperature thermal treatment or applying an anodic potential, showing superior recycling reproducibility.  相似文献   

17.
Significant enhancement in the electrocatalytic activity of Pt particles toward oxygen reduction reaction (ORR) has been achieved by depositing them on a single wall carbon nanotubes (SWCNT) support. Compared to a commercial Pt/carbon black catalyst, Pt/SWCNT films cast on a rotating disk electrode exhibit a lower onset potential and a higher electron-transfer rate constant for oxygen reduction. Improved stability of the SWCNT support is also confirmed from the minimal change in the oxygen reduction current during repeated cycling over a period of 36 h. These studies open up ways to utilize SWCNT/Pt electrocatalyst as a cathode in the proton-exchange-membrane-based hydrogen and methanol fuel cells.  相似文献   

18.
The Fe3O4-Prussian blue (PB) nanoparticles with core-shell structure have been in situ prepared directly on a nano-Fe3O4-modified glassy carbon electrode by cyclic voltammetry (CV). First, the magnetic nano-Fe3O4 particles were synthesized and characterized by X-ray diffraction. Then, the properties of the Fe3O4-PB nanoparticles were characterized by CV, electrochemical impedance spectroscopy, and superconducting quantum interference device. The resulting core-shell Fe3O4-PB-modified electrode displays a dramatic electrocatalytic ability toward H2O2 reduction, and the catalytic current was a linear function with the concentration of H2O2 in the range of 1 × 10−7~5 × 10−4 mol/l. A detection limit of 2 × 10−8 (s/n = 3) was determined. Moreover, it showed good reproducibility, enhanced long-term stability, and potential applications in fields of magnetite biosensors.  相似文献   

19.
用电化学扫描法制备了{[PMo12O40]3--Pt/PAMAM}n多层复合膜,通过X射线光电子能谱(XPS)、循环伏安测定(CV)和原子力显微镜(AFM)对样品的化学组成和膜的均匀性进行了表征。测试和分析结果表明[PMo12O40]3--Pt和PAMAM通过静电相互作用形成了交替多层复合膜,且膜的增长均匀,[PMo12O40]3-和Pt粒子均匀分布在间隔剂PAMAM上。采用三电极体系的循环伏安电化学分析方法研究了样品在酸性溶液中对甲醇的电催化氧化活性,结果表明,与Pt/GCE催化剂相比,{[PMo12O40]3--Pt/PAMAM}n/GCE呈现出较高的电催化氧化活性和好的稳定性。  相似文献   

20.
The polyporous carbon supported tungsten carbide(polyporous C@WC1-x) composite was prepared using hexagonal silica MCM-41 as the hard template by raw material solution impregnation,mechanical milling and simultaneous reduction and carbonization by temperature programming in mixture gas(CH4/H2).The structure and morphology of polyporous C@WC1-x composite were studied via X-ray diffraction,transmission electron microscopy and so on.The electrocatalytic property was tested for the electroreduction of p-nitrophenol(PNP) in neutral media.Results revealed that the composite is consisted of polyporous carbon and nanocrystalline WC1-x,possessing good electrocatalytic activity in the reaction of PNP reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号