首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. A》2020,384(26):126673
We study one-dimensional quantum walk with four internal degrees of freedom resulted from two entangled qubits. We will demonstrate that the entanglement between the qubits and its corresponding coin operator enable one to steer the walker's state from a classical to standard quantum-walk behavior, and a novel one. Additionally, we report on self-trapped behavior and perfect transfer with highest velocity for the walker. We also show that symmetry of probability density distribution, the most probable place to find the walker and evolution of the entropy are subject to initial entanglement between the qubits. In fact, we confirm that if the two qubits are separable (zero entanglement), entropy becomes minimum whereas its maximization happens if the two qubits are initially maximally entangled. We will make contrast between cases where the entangled qubits are affected by coin operator identically or else, and show considerably different deviation in walker's behavior and its properties.  相似文献   

2.
We derive the probability density for a simple measure of the asymmetry of a one-dimensional random walk, namely the ratio of the minimum of the two maximum displacements in the positive and negative directions, to the maximum. We show that in the diffusion limit the asymmetry is independent of time. These results are shown to apply to random walks in which individual steps have a stable law distribution as well as to multidimensional random walks.  相似文献   

3.
The statistical properties of the Hang Seng index in the Hong Kong stock market are analyzed. The data include minute by minute records of the Hang Seng index from January 3, 1994 to May 28, 1997. The probability distribution functions of index returns for the time scales from 1 minute to 128 minutes are given. The results show that the nature of the stochastic process underlying the time series of the returns of Hang Seng index cannot be described by the normal distribution. It is more reasonable to model it by a truncated Lévy distribution with an exponential fall-off in its tails. The scaling of the maximium value of the probability distribution is studied. Results show that the data are consistent with scaling of a Lévy distribution. It is observed that in the tail of the distribution, the fall-off deviates from that of a Lévy stable process and is approximately exponential, especially after removing daily trading pattern from the data. The daily pattern thus affects strongly the analysis of the asymptotic behavior and scaling of fluctuation distributions. Received 9 August 2000 and Received in final form 28 August 2000  相似文献   

4.
In the literature, there are numerous studies of one-dimensional discrete-time quantum walks (DTQWs) using a moving shift operator. However, there is no exact solution for the limiting probability distributions of DTQWs on cycles using a general coin or swapping shift operator. In this paper, we derive exact solutions for the limiting probability distribution of quantum walks using a general coin and swapping shift operator on cycles for the first time. Based on the exact solutions, we show how to generate symmetric quantum walks and determine the condition under which a symmetric quantum walk appears. Our results suggest that choosing various coin and initial state parameters can achieve a symmetric quantum walk. By defining a quantity to measure the variation of symmetry, deviation and mixing time of symmetric quantum walks are also investigated.  相似文献   

5.
Advection and dispersion in time and space   总被引:2,自引:0,他引:2  
B. Baeumer  D.A. Benson  M.M. Meerschaert   《Physica A》2005,350(2-4):245-262
Previous work showed how moving particles that rest along their trajectory lead to time-nonlocal advection–dispersion equations. If the waiting times have infinite mean, the model equation contains a fractional time derivative of order between 0 and 1. In this article, we develop a new advection–dispersion equation with an additional fractional time derivative of order between 1 and 2. Solutions to the equation are obtained by subordination. The form of the time derivative is related to the probability distribution of particle waiting times and the subordinator is given as the first passage time density of the waiting time process which is computed explicitly.  相似文献   

6.
We consider a broad class of Continuous Time Random Walks (CTRW) with large fluctuations effects in space and time distributions: a random walk with trapping, describing subdiffusion in disordered and glassy materials, and a Lévy walk process, often used to model superdiffusive effects in inhomogeneous materials. We derive the scaling form of the probability distributions and the asymptotic properties of all its moments in the presence of a field by two powerful techniques, based on matching conditions and on the estimate of the contribution of rare events to power-law tails in a field.  相似文献   

7.
We propose a model of time evolving networks in which a kind of transport between vertices generates new edges in the graph. We call the model “Network formed by traces of random walks”, because the transports are represented abstractly by random walks. Our numerical calculations yield several important properties observed commonly in complex networks, although the graph at initial time is only a one-dimensional lattice. For example, the distribution of vertex degree exhibits various behaviors such as exponential, power law like, and bi-modal distribution according to change of probability of extinction of edges. Another property such as strong clustering structure and small mean vertex–vertex distance can also be found. The transports represented by random walks in a framework of strong links between regular lattice is a new mechanisms which yields biased acquisition of links for vertices.  相似文献   

8.
Verhulst model with Lévy white noise excitation   总被引:1,自引:0,他引:1  
The transient dynamics of the Verhulst model perturbed by arbitrary non-Gaussian white noise is investigated. Based on the infinitely divisible distribution of the Lévy process we study the nonlinear relaxation of the population density for three cases of white non-Gaussian noise: (i) shot noise; (ii) noise with a probability density of increments expressed in terms of Gamma function; and (iii) Cauchy stable noise. We obtain exact results for the probability distribution of the population density in all cases, and for Cauchy stable noise the exact expression of the nonlinear relaxation time is derived. Moreover starting from an initial delta function distribution, we find a transition induced by the multiplicative Lévy noise, from a trimodal probability distribution to a bimodal probability distribution in asymptotics. Finally we find a nonmonotonic behavior of the nonlinear relaxation time as a function of the Cauchy stable noise intensity.  相似文献   

9.
We study the probability distribution for the area under a directed random walk in the plane. The walk can serve as a simple model for avalanches based on the idea that the front of an avalanche can be described by a random walk and the size is given by the area enclosed. This model captures some of the qualitative features of earthquakes, avalanches, and other self-organized critical phenomena in one dimension. By finding nonlinear functional relations for the generating functions we calculate directly the exponent in the size distribution law and find it to be 4/3.  相似文献   

10.
This note contains a development of the theory of first passage times for one-dimensional lattice random walks with steps to nearest neighbor only. The starting point is a recursion relation for the densities of first passage times from the set of lattice points. When these densities are unrestricted, the formalism allows us to discuss first passage times of continuous time random walks. When they are negative exponential densities we show that the resulting equation is the adjoint of the master equation. This is the lattice analog of a correspondence well known for systems describable by a Fokker-Planck equation. Finally we discuss first passage problems for persistent random walks in which at each step the random walker continues in the same direction as the preceding step with probability a or reverses direction with probability 1–  相似文献   

11.
This paper is concerned with the numerical simulation of a random walk in a random environment in dimension d = 2. Consider a nearest neighbor random walk on the 2-dimensional integer lattice. The transition probabilities at each site are assumed to be themselves random variables, but fixed for all time. This is the random environment. Consider a parallel strip of radius R centered on an axis through the origin. Let X R be the probability that the walk that started at the origin exits the strip through one of the boundary lines. Then X R is a random variable, depending on the environment. In dimension d = 1, the variable X R converges in distribution to the Bernoulli variable, X = 0, 1 with equal probability, as R . Here the 2-dimensional problem is studied using Gauss-Seidel and multigrid algorithms.  相似文献   

12.
A restricted random walk on ad-dimensional cubic lattice with different probabilities for forward, backward, and sideward steps is studied. The analytic solution for the generating function, exact expressions for the second and fourth moments of displacements, and diffusion and Burnett coefficients are given, as well as a systematic asymptotic expansion for the probability distribution of long walks.This paper is dedicated to Nico van Kampen.  相似文献   

13.
Two-dimensional loop-erased random walks (LERWs) are random planar curves whose scaling limit is known to be a Schramm-Loewner evolution SLE κ with parameter κ=2. In this note, some properties of an SLE κ trace on doubly-connected domains are studied and a connection to passive scalar diffusion in a Burgers flow is emphasised. In particular, the endpoint probability distribution and winding probabilities for SLE2 on a cylinder, starting from one boundary component and stopped when hitting the other, are found. A relation of the result to conditioned one-dimensional Brownian motion is pointed out. Moreover, this result permits to study the statistics of the winding number for SLE2 with fixed endpoints. A solution for the endpoint distribution of SLE4 on the cylinder is obtained and a relation to reflected Brownian motion pointed out.  相似文献   

14.
The properties of a linear differential equation with an additive quadratic noise are analyzed. The graphs of the probability distribution of the process are presented for various values of the noise strength and the damping constant. The time evolution of the distribution is also shown. An infinitesimal generator of the evolution operator of the process is constructed. A diffusion-type approximation is considered and a comparison of the exact solution with the approximate solution is carried out.This paper is dedicated to the memory of Prof. A. Pawlikowski.  相似文献   

15.
We consider a system of random walks or directed polymers interacting with an environment which is random in space and time. Under minimal assumptions on the distribution of the environment, we prove that this system has diffusive behavior with probability one ifd>2 and <0, where 0 is defined in terms of the probability that the symmetric nearest neighbor random walk on thed-dimensional integer lattice ever returns to its starting point. We also obtain a precise estimate for the mean square displacement of this system.  相似文献   

16.
T.S. Biró 《Physica A》2008,387(7):1603-1612
In this paper we study the possible microscopic origin of heavy-tailed probability density distributions for the price variation of financial instruments. We extend the standard log-normal process to include another random component in the so-called stochastic volatility models. We study these models under an assumption, akin to the Born-Oppenheimer approximation, in which the volatility has already relaxed to its equilibrium distribution and acts as a background to the evolution of the price process. In this approximation, we show that all models of stochastic volatility should exhibit a scaling relation in the time lag of zero-drift modified log-returns. We verify that the Dow-Jones Industrial Average index indeed follows this scaling. We then focus on two popular stochastic volatility models, the Heston and Hull-White models. In particular, we show that in the Hull-White model the resulting probability distribution of log-returns in this approximation corresponds to the Tsallis (t-Student) distribution. The Tsallis parameters are given in terms of the microscopic stochastic volatility model. Finally, we show that the log-returns for 30 years Dow Jones index data is well fitted by a Tsallis distribution, obtaining the relevant parameters.  相似文献   

17.
Several features of the trapping of random walks on a one-dimensional lattice are analyzed. The results of this investigation are as follows: (1) The correction term to the known asymptotic form for the survival probability ton steps is O(( 2n)–1/3), where =–ln(1–c), andc is the trap concentration. (2) The short time form for the survival probability is found to be exp[–a(c)n 1/2], wherea(c) is given in Eq. (21). (3) The mean-square displacement of a surviving random walker is found to go liken 2/3for largen. (4) When the distribution of trap-free regions is changed so that very large regions are much rarer than for ideally random trap placement the asymptotic survival probability changes its dependence onn. One such model is studied.  相似文献   

18.
A general expression is derived for the Laplace transform of the probability density of the first passage time for the span of a symmetric continuous-time random walk to reach levelS. We show that when the mean time between steps is finite, the mean first passage time toS is proportional toS 2. When the pausing time density is asymptotic to a stable density we show that the first passage density is also asymptotically stable. Finally when the jump distribution of the random walk has the asymptotic formp(j)A/|j| +1, 0 < < 2 it is shown that the mean first passage time toS goes likeS .  相似文献   

19.
We present analytical and numerical results for the probability distributions of the number of sitesS as a function of the number of shellsl for several ensembles of percolation clusters generated on a Cayley tree at criticality. We find that for the incipient infinite percolation cluster the probability distribution isP(S¦l)~(S/l 4)exp(- aS/l 2) for Sl1.  相似文献   

20.
In present paper, we propose a highly clustered weighted network model that incorporates the addition of a new node with some links, new links between existing nodes and the edge's weight dynamical evolution based on weight-dependent walks at each time step. The analytical approach and numerical simulation show that the system grows into a weighted network with the power-law distributions of strength, weight and degree. The weight-dependent walk length l will not influence the strength distribution, but the clustering coefficient of the network is sensitive to l. Particularly, the clustering coefficient is especially high and almost independent of the network size when l=2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号