首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of model complexes for the type III site, in oxidised hemocyanin, containing Cu2(μ-0Ph)3+ core have been synthesised using a heptadentate ligand (H3L) formed from the Schiff base condensation of triethylenetetramine and salicylaldehyde. The ligand provides one imine and one inbuilt imidazole nitrogen and two phenolic oxygen donors with both five- and six-membered chelate rings to each metal centre. In the pentacoordinated complexes [Cu2(L)X]·nH2O, a third exogenous bridging ligand is present. The TG curve indicates the loss of lattice water molecules between 70 and 125°C. The residue after decomposition is CuO above 550°C. Theg values of theX-band EPR spectrum of [Cu2L(μ-OAc)]·2H2O in methanol glass (77 K) are typical of a variety of bridged copper(II) dimers. The copper-copper magnetic interaction is dependent on the presence and nature of X in these complexes.  相似文献   

2.
Doubly bridged mu-alkoxo-mu-X (X = pyrazolato or acetato) dinuclear MnIII complexes of 2-hydroxy-N-{2-hydroxy-3-[(2-hydroxybenzoyl)amino]propyl}benzamide) (H5L1) and 2-hydroxy-N-{2-hydroxy-4-[(2-hydroxybenzoyl)amino]butyl}benzamide (H5L2), [Mn2(L)(pz)(MeOH)4].xMeOH (1, L = L1, x = 0.5; 2, L = L2, x = 0; Hpz = pyrazole) and [Mn2(L1)(OAc)(MeOH)4] (3), have been prepared, and their structure and magnetic properties have been studied. The X-ray diffraction analysis of 1 (C24.5H34Mn2N4O9.5, triclinic, P, a = 12.2050(7) A, b = 12.7360(8) A, c = 19.2780(10) A, alpha = 99.735(5) degrees , beta = 96.003(4) degrees , gamma = 101.221(5) degrees , V = 2867.6(3) A3, Z = 4), 2 (C25H34Mn2N4O9, triclinic, P, a = 9.4560(5) A, b = 11.0112(5) A, c = 13.8831(6) A, alpha = 90.821(4) degrees , beta = 92.597(4) degrees , gamma = 93.403(4) degrees , V = 1441.29(12) A3, Z = 2), and 3 (C23H32Mn2N2O11, triclinic, P, a = 10.511(5) A, b = 11.713(5) A, c = 13.135(5) A, alpha = 64.401(5) degrees , beta = 74.000(5) degrees , gamma = 66.774(5) degrees , V = 1329.3(10) A3, Z = 2) revealed that all complexes consist of dinuclear units which are further extended into 1D (1 and 3) and 2D (2) supramolecular networks via hydrogen-bonding interactions. Magnetic susceptibility data evidence antiferromagnetic interactions for all three complexes: J = -3.6 cm-1, D approximately 0 cm-1, g = 1.93 (1); J = -2.7 cm-1, D = 0.8 cm-1, g = 1.93 (2); J = -4.9 cm-1, D = 3.8 cm-1, g = 1.95 (3).  相似文献   

3.
Bis{μ‐2‐[bis(pyridin‐2‐ylmethyl)amino]acetato}bis[diaquamanganese(II)] bis(trifluoromethanesulfonate) monohydrate, [Mn2(C14H14N3O2)2(H2O)4](CF3O3S)2·H2O, (I), and bis{μ‐3‐[bis(pyridin‐2‐ylmethyl)amino]propionato}bis[aquamanganese(II)] bis(trifluoromethanesulfonate) dihydrate, [Mn2(C15H16N3O2)2(H2O)2](CF3O3S)2·2H2O, (II), form binuclear seven‐coordinate complexes. Oxidation of (II) with ammonium hexanitratocerate(IV), (NH4)2[Ce(NO3)6], gave the oxide‐bridged dimanganese(IV) complex di‐μ‐oxido‐bis(bis{3‐[bis(pyridin‐2‐ylmethyl)amino]propionato}manganese(IV)) bis[triaquatetranitratocerate(IV)], [Mn2O2(C15H16N3O2)2][Ce(NO3)4(H2O)3]2, (III). The manganese complexes in (II) and (III) sit on a site of symmetry.  相似文献   

4.
The preparation of donor (D)-photosensitizer (S) arrays, consisting of a manganese complex as D and a ruthenium tris(bipyridyl) complex as S has been pursued. Two new ruthenium complexes containing coordinating sites for one (2a) and two manganese ions (3a) were prepared in order to provide models for the donor side of photosystem II in green plants. The manganese coordinating site consists of bridging and terminal phenolate as well as terminal pyridyl ligands. The corresponding ruthenium-manganese complexes, a manganese monomer 2b and dimer 3b, were obtained. For the dimer 3b, our data suggest that intramolecular electron transfer from manganese to photogenerated ruthenium(III) is fast, k(ET) > 5 x 10(7) s(-)(1).  相似文献   

5.
Reactions of MnX2.nH2O with tris(N-(D-mannosyl)-2-aminoethyl)amine ((D-Man)3-tren), which was formed from D-mannose and tris(2-aminoethyl)amine (tren) in situ, afforded colorless crystals of [Mn((D-Man)3-tren)]X2 (3a, X = Cl; 3b, X = Br; 3c, X = NO3; 3d, X = 1/2SO4). The similar reaction of MnSO4.5H2O with tris(N-(L-rhamnosyl)-2-aminoethyl)amine ((L-Rha)3-tren) gave [Mn((L-Rha)3-tren)]SO4 (4d), where L-rhamnose is 6-deoxy-L-mannose. The structures of 3b and 4d were determined by X-ray crystallography to have a seven-coordinate Mn(II) center ligated by the N-glycoside ligand, (aldose)3-tren, with a C3 helical structure. Three D-mannosyl residues of 3b are arranged in a delta(ob3) configuration around the metal, leading to formation of a cage-type sugar domain in which a water molecule is trapped. In 4d, three L-rhamnosyl moieties are in a delta(lel3) configuration to form a facially opened sugar domain on which a sulfate anion is capping through hydrogen bonding. These structures demonstrated that a configurational switch around the seven-coordinate manganese(II) center occurs depending on its counteranion. Reactions of 3a, 3b, and 4d with 0.5 equiv of Mn(II) salt in the presence of triethylamine yielded reddish orange crystals formulated as [[Mn((aldose)3-tren)]2Mn(H2O)X3.nH2O (5a, aldose = D-Man, X = Cl; 5b, aldose = D-Man, X = Br; 6d, aldose = L-Rha, X = 1/2SO4). The analogous trinuclear complexes 6a (aldose = L-Rha, X = Cl), 6b (aldose = L-Rha, X = Br), and 6c (aldose = L-Rha, X = NO3) were prepared by the one-pot reaction of Mn(II) salts with (L-Rha)3-tren without isolation of the intermediate Mn(II) complexes. X-ray crystallographic studies revealed that 5a, 5b, 6c, and 6d have a linearly ordered trimanganese core, Mn(II)Mn(III)Mn(II), bridged by two carbohydrate residues with Mn-Mn separations of 3.845(2)-3.919(4) A and Mn-Mn-Mn angles of 170.7(1)-173.81(7) degrees. The terminal Mn(II) atoms are seven-coordinate with a distorted mono-face-capped octahedral geometry ligated by the (aldose)3-tren ligand through three oxygen atoms of C-2 hydroxyl groups, three N-glycosidic nitrogen atoms, and a tertiary amino group. The central Mn(III) atoms are five-coordinate ligated by four oxygen atoms of carbohydrate residues in the (aldose)3-tren ligands and one water molecule, resulting in a square-pyramidal geometry. In the bridging part, a beta-aldopyranosyl unit with a chair conformation bridges the two Mn(II)Mn(III) ions with the C-2 mu-alkoxo group and with the C-1 N-glycosidic amino and the C-3 alkoxo groups coordinating to each metal center. These structures could be very useful information in relation to xylose isomerases which promote aldose-ketose isomerization by using divalent dimetal centers such as Mn2+, Mg2+, and Co2+.  相似文献   

6.
Two tetranuclear Mn complexes with an average Mn oxidation state of +2.5 have been prepared. These valence isomers have been characterized by a combination of X-ray crystallography, X-ray absorption spectroscopy, and magnetic susceptibility. The Mn(II)3Mn(IV) tetramer has the Mn ions arranged in a distorted tetrahedron, with an S = 6 ground spin state, dominated by ferromagnetic exchange among the manganese ions. The Mn(II)2Mn(III)2 tetramer also has a distorted tetrahedral arrangement of Mn ions but shows magnetic behavior, suggesting that it is a single-molecule magnet. The X-ray absorption near-edge structure (XANES) spectra for the two complexes are similar, suggesting that, while Mn XANES has sufficient sensitivity to distinguish between trinuclear valence isomers (Alexiou et al. Inorg. Chem. 2003, 42, 2185), similar distinctions are difficult for tetranuclear complexes such as that found in the photosynthetic oxygen-evolving complex.  相似文献   

7.
A 3,5-di-tert-butyl-1,2-semiquinonato (DTBSQ) adduct of Mn(II) was prepared by a reaction between Mn(II)(TPA)Cl(2) (TPA = tris(pyridin-2-ylmethyl)amine) and DTBSQ anion and was isolated as a tetraphenylborate salt. The X-ray crystal structure revealed that the complex is formulated as a manganese(II)-semiquinonate complex [Mn(II)(TPA)(DTBSQ)](+) (1). The electronic spectra in solution also indicated the semiquinonate coordination to Mn. The exposure of 1 in acetonitrile to dioxygen afforded 3,5-di-tert-butyl-1,2-benzoquione and a bis(mu-oxo)dimanganese(III,III) complex [Mn(III)(2)(mu-oxo)(2)(TPA)(2)](2+) (2). The reaction of 2 with 3,5-di-tert-butylcatechol (DTBCH(2)) quantitatively afforded two equivalents of 1 under anaerobic conditions. The highly efficient catalytic oxidation of DTBCH(2) with dioxygen was achieved by combining the above two reactions, that is, by constructing a catalytic cycle involving both manganese complexes 1 and 2. It was revealed that dioxygen is reduced to water but not to hydrogen peroxide in the catalytic cycle.  相似文献   

8.
9.
A manganese(II) complex of 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) has been synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR, and UV–Vis spectroscopic techniques. Oxidation of alcohols to their corresponding aldehydes and ketones was conducted by this catalyst using oxone (2KHSO5·KHSO4·K2SO4) as an oxidant under biphasic reaction conditions (CH2Cl2/H2O) and tetra-n-butylammonium bromide as phase transfer agent under air at room temperature. Easy preparation, mild reaction conditions, high yields of the products, short reaction times, no further oxidation to the corresponding carboxylic acids, high selectivity and inexpensive reagents make this catalytic system a useful oxidation method for aliphatic and benzylic alcohols.  相似文献   

10.
Synthesis of six hydroxo-bridged binuclear manganese(III) complexes of formulae [MnL-X-MnL](ClO4) [X = OH (1–6)] along with a mononuclear manganese(III) complex (7) [Mn(L)(L′)(MeOH)2] [HL′ = 2-(2-hydroxy-phen-yl)benzimidazole] and two carboxylate-bridged binuclear manganese(III) complexes (8) and (9) are described. The complexes have been characterized by the combination of i.r., u.v.-vis spectroscopy, magnetic moments and by their redox properties. The electronic spectra of all the complexes exhibit almost identical features consisting of two d–d bands at ca. 550 and 600 nm, one MLCT band at ca.400 nm, together with two π–π* intra-ligand transitions at ca. 250 nm and ca.300 nm. Room temperature magnetic data range from μ = 2.7–3.0 BM indicates some super-exchange between the binuclear metal centers via bridging hydroxo/carboxylato groups. The X-ray crystal structure of the binuclear complex (5) revealed that it has a symmetric MnIIIN2O2 core bridged by a hydroxyl group. The X-ray analysis of the mononuclear complex (7) showed that the manganese-center possesses a distorted octahedral geometry. Electrochemical properties of hydroxo-bridged manganese(III) complexes (1–6) show identical features consisting of an irreversible and a quasi-reversible reduction corresponding to the Mn2III → MnIIMnIII → MnIIMnII couples in the voltammogram. It was found that electron withdrawing substituents on the ligand result in easier reduction. Complex (7) displays an irreversible reduction at 0.08 V and a reversible oxidation at 0.45V assignable to the MnIII → MnII reduction and MnIII → MnIV oxidation, respectively. The carboxylate-bridged compound (8) exhibits two irreversible oxidations at 0.4 and 0.6 V, probably due to Mn2III → MnIIIMnIV → MnIVMnIV oxidations and shows a quasi-reversible reductive wave at −0.85 V, tentatively assigned to Mn2III → MnIIMnIII reduction.  相似文献   

11.
The first high nuclearity, mixed-metal Bi(III)/Mn(IV) and Bi(III)/Mn(III) complexes are reported. The former complexes are [Bi(2)Mn(IV)(6)O(9)(O(2)CEt)(9)(HO(2)CEt)(NO(3))(3)] (1) and [Bi(2)Mn(IV)(6)O(9)(O(2)CPh)(9)(HO(2)CPh)(NO(3))(3)] (2) and were obtained from the comproportionation reaction between Mn(O(2)CR)(2) and MnO(4)(-) in a 10:3 ratio in the presence of Bi(NO(3))(3) (3 equiv) in either a H(2)O/EtCO(2)H (1) or MeCN/PhCO(2)H (2) solvent medium. The same reaction that gives 2, but with Bi(O(2)CMe)(3) and MeNO(2) in place of Bi(NO(3))(3) and MeCN, gave the lower oxidation state product [BiMn(III)(10)O(8)(O(2)CPh)(17)(HO(2)CPh)(H(2)O)] (3). Complexes 1 and 2 are near-isostructural and possess an unusual and high symmetry core topology consisting of a Mn(IV)(6) wheel with two central Bi(III) atoms capping the wheel on each side. In contrast, the [BiMn(III)(10)O(8)](17+) core of 3 is low symmetry, comprising a [BiMn(3)(μ(3)-O)(2)](8+) butterfly unit, four [BiMn(3)(μ(4)-O)](10+) tetrahedra, and two [BiMn(2)(μ(3)-O)](7+) triangles all fused together by sharing common Mn and Bi vertices. Variable-temperature, solid-state dc and ac magnetization data on 1-3 in the 1.8-300 K range revealed that 1 and 2 possess an S = 0 ground state spin, whereas 3 possesses an S = 2 ground state. The work offers the possibility of access to molecular analogs of the multifunctional Bi/Mn/O solids that are of such great interest in materials science.  相似文献   

12.
The dinuclear (μ2-acetate)bis(μ2-phenoxide)di-copper(II) complex, 1 with a tetradentate ligand, L (L = 2,4-di-tert-butyl-6-{[(2-dimethylaminoethyl)-(2-hydroxybenzyl)-amino]-methyl}-phenol) has been synthesized and characterized. The single crystal X-ray structure of the dinuclear complex was determined. Variable temperature magnetic susceptibility measurement showed that the two copper(II) centres are strongly anti-ferromagnetically coupled. The structural study revealed that the Cu-Cu distance (2.911 Å) is very close to the distance observed in dinuclear copper(II) acetate. The average Cu-O-Cu angles (∼87°) are found to be the lowest amongst the examples reported so far.  相似文献   

13.
The diruthenium(III) compound [(μ-oxa){Ru(acac)(2)}(2)] [1, oxa(2-) =oxamidato(2-), acac(-) =2,4-pentanedionato] exhibits an S=1 ground state with antiferromagnetic spin-spin coupling (J=-40 cm(-1)). The molecular structure in the crystal of 1?2 C(7)H(8) revealed an intramolecular metal-metal distance of 5.433 ? and a notable asymmetry within the bridging ligand. Cyclic voltammetry and spectroelectrochemistry (EPR, UV/Vis/NIR) of the two-step reduction and of the two-step oxidation (irreversible second step) produced monocation and monoanion intermediates (K(c) =10(5.9)) with broad NIR absorption bands (ε ca. 2000 M(-1)cm(-1)) and maxima at 1800 (1(-)) and 1500 nm (1(+)). TD-DFT calculations support a Ru(III)Ru(II) formulation for 1(-) with a doublet ground state. The 1(+) ion (Ru(IV)Ru(III)) was calculated with an S=3/2 ground state and the doublet state higher in energy (ΔE=694.6 cm(-1)). The Mulliken spin density calculations showed little participation of the ligand bridge in the spin accommodation for all paramagnetic species [(μ-oxa){Ru(acac)(2)}(2)](n), n=+1, 0, -1, and, accordingly, the NIR absorptions were identified as metal-to-metal (intervalence) charge transfers. Whereas only one such NIR band was observed for the Ru(III)Ru(II) (4d(5)/4d(6)) system 1(-), the Ru(IV)Ru(III) (4d(4)/4d(5)) form 1(+) exhibited extended absorbance over the UV/Vis/NIR range.  相似文献   

14.
Computational methods based on density functional theory have been employed to analyze the magnetic properties of dinuclear bis(phenoxo)-bridged CuII complexes. While the largest part of complexes in that family show antiferromagnetic coupling, we focus our study on those cases with distorted geometries that present ferromagnetic behaviour. The calculations reproduce such a magnetic behaviour, and a structural analysis reveals the main role played by several structural parameters, such as the Cu–O–Cu bridging angle. The out-of-plane shift of the phenoxo ring and the hinge distortion of the Cu2O2 central framework that are also important for similar hydroxo and alkoxo complexes. In this case the conformation of the phenoxo groups and the rotation of the phenyl rings can also play an important role. The last part of this work is dedicated to analyze the influence of the substituents of the phenoxo ring on the magnetic properties, which is especially important for structures with large out-of-plane shifted phenoxo rings. The presence of π electron releasing groups favours a ferromagnetic coupling.  相似文献   

15.
The synthesis and characterisation of [Ru(bipy)(2)(L1)](2+) and the homodinuclear complexes [M(bipy)(2)(L1)M(bipy)(2)](4+)(where M = Ru or Os), employing the ditopic ligand, 1,4-phenylene-bis(1-pyridin-2-ylimidazo[1,5-a]pyridine)(L1), are reported. The complexes are identified by elemental analysis, UV/Vis, emission, resonance Raman, transient resonance Raman and (1)H NMR spectroscopy, mass spectrometry and electrochemistry. The X-ray structure of the complex [Ru(bipy)(2)(L1)(bipy)(2)Ru](PF(6))(4) is also reported. DFT calculations, carried out to model the electronic properties of the compounds, are in good agreement with experiment. Minimal communication between the metal centres is observed. The low level of ground state electronic interaction is rationalized in terms of the poor ability of the phenyl spacer in facilitating superexchange interactions. Using the electronic and electrochemical data a detailed picture of the electronic properties of the RuRu compound is presented.  相似文献   

16.
Summary The syntheses of the complexes [Rh2(ap)4X] (ap = the heterocyclic anion of 2-aminopyridine; X = Cl or Br) are described. The complexes have been characterized on the basis of elemental analysis, i.r., e.s.r. and electronic absorption spectra, and magnetic susceptibility measurements. The 2-aminopyridine anion behaves as bridging ligand, coordinatingvia the pyridine and amine nitrogen atoms in a way analogous to that in the dinuclear rhodium(II) carboxylates.  相似文献   

17.
A dinuclear manganese(III) tetradentate Schiff-base complex, [Mn2(salophen)2(4,4′-bipy)3](BPh4)2 (1) (salophen = N,N′-o-phenylene-bis(salicylideneaminato)), has been synthesized and structurally characterized. Compound 1 crystallized in the triclinic, P 1 space group, a = 13.431(4), b = 13.791(4), c = 13.886(4) Å, α = 73.599(5)°, β = 80.410(6)°, γ = 71.241(5)°, V = 2328.3(12) Å3. Complex 1 contains two Mn(salophen) moieties bridged by 4,4′-bipy to form a dinuclear unit, with two terminal 4,4′-bipy ligands. Variable temperature magnetic susceptibility (2–300 K) shows very weak ferromagnetic interactions between the Mn(III) ions.  相似文献   

18.
A series of mononuclear Mn(II), Mn(III), and Mn(IV) complexes was prepared using a single tripodal ligand (H(3)L). Addition of a cation (NH(4)(+), K(+), Na(+)) to [Mn(III)L] showed a pronounced effect on the redox potentials. Different variants of Jahn-Teller distortion, axial elongation and compression, were observed in the Mn(III) complexes.  相似文献   

19.
A series of isostructural dimeric manganese complexes of the type [(Me(4)dtne)Mn(2)(mu-O)(2)(mu-R)](2+)(X(-))(2) have been prepared and characterized. The dimanganese cores of these complexes are rigidly held together by the hexadentate ligand Me(4)dtne (Me(4)dtne = 1,2-bis(4,7-dimethyl-1,4,7-triazacyclonon-1-yl)ethane). Molecular structures for the entire series have been obtained by X-ray diffraction measurements, of which complexes 2 (R = (-)O(2)BPh), 3 (R = (-)O(2)C-PROXYL), 4 (R = (-)O(2)C-TEMPO), and 5 (R = (-)O(2)BPhNIT) are reported here (HO(2)C-PROXYL = 3-carboxy-2,2,5,5-tetramethylpyrrolidin-1-yloxy; HO(2)C-TEMPO = 4-carboxy-2,2,6,6-tetramethylpiperidin-1-yloxy; and HO(2)BPhNIT = 2-(4-(dihydroxyboranyl)-phenyl)-4,4,5,5-tetramethyl-3-oxyimidazolidin-1-oxide). The structures of 1 (R = (-)OAc) and 6 (R = (-)O(2)CPhNIT) have been reported previously (HO(2)CPhNIT = 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-3-oxyimidazolidin-1-oxide). All complexes exhibit several redox states, which have been investigated by electrochemistry. Complexes 1, 3, 4, and 6 contain a mixed-valent Mn(III)Mn(IV) core with an isolated magnetic ground state of S = 1/2. The exchange coupling between the manganese ions is strong throughout the series (J approximately -130 +/- 10 cm(-)(1), H = -2JS(1)S(2)). The radical complexes 3, 4, and 6 exhibit, in addition, long-range exchange interaction (6.9, 7.7, and 8.8 A, respectively) between the organic radical and the dimanganese core. The intramolecular anisotropic coupling was determined from cw-EPR line shape analyses at S-, X-, and Q-band frequencies and from the intensity of half-field signals detected in normal- and parallel-mode (J(d,)(z)() = -120 x 10(-)(4), -105 x 10(-)(4), and -140 x 10(-)(4) cm(-)(1), for 3, 4, and 6 respectively). Distance information was obtained for the dimanganese core and the organic radicals from these values by using a three-spin dipole model and local spin contributions for the manganese ions.  相似文献   

20.
The compound Ru2Cl(C6H5CONH)4 has now been obtained in crystalline form and the crystal and molecular structure determined by X-ray met  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号