首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solubility property of the ternary of Cr(NO3)3‐Met‐H2O has been investigated in the whole concentration by the phase equilibrium method, and the phase diagram has been constructed. From the phase diagram, the congruently soluble complexes Cr(Met)(NO3)3·2H2O (D) and Cr(Met)2(NO3)3·2H2O (E) have been prepared and characterized by chemical analysis, elemental analysis, IR and TG‐DTG. Their combustion energies have been determined by a RBC‐type I precision rotating‐bomb calorimeter, and their standard enthalpies of formation, Δf, Hθm, have been calculated as (‐1842.01 ± 2.13) kJ·mol?1 and (‐1136.16 ± 4.45) kJ·mol?1, respectively.  相似文献   

2.
Three new μ‐oxamido‐bridged heterodinuclear copper (II)‐chromium (III) complexes formulated [Cu(Me2oxpn)Cr‐(L)2](NO3)3, where Me2oxpn denotes N,N'‐bis(3‐amino‐2, 2‐dimethylpropyl)oxamido dianion and L represents 5‐methyl‐1,10‐phenanthroline (Mephen), 4,7‐diphenyl‐1,10‐phenanthroline (Ph2phen) or 2,2′‐bipyridine (bpy), have been synthesized and characterized by elemental analyses, IR and electronic spectral studies, magnetic moments of room‐temperature and molar conductivity measurements. It is proposed that these complexes have oxamido‐bridged structures consisting of planar copper (II) and octahedral chromium (III) ions. The variable temperature magnetic susceptibilities (4.2–300 K) of complexes [Cu(Me2oxpn)Cr(Ph2phen)2](NO3)3 (1) and [Cu(Me2oxpn)Cr(Mephen)2] (NO3)3 (2) were further measured and studied, demonstrating the ferromagnetic interaction between the adjacent chromium (III) and copper (II) ions through the oxamido‐bridge in both complexes 1 and 2. Based on the spin Hamiltonian, ? = ‐ 2J?1 · ?2, the exchange integrals J were evaluated as + 21.5 an?1 for 1 and + 22.8 cm?1 for 2.  相似文献   

3.
A series of La(III) and Th(IV) complexes have been synthesized by template condensation of 2,6-diformyl-4-methylphenol, bis-(4-amino-5-mercapto-1,2,4-triazol-3-yl)alkanes and La(NO3)3 ·?6H2O/Th(NO3)4 ·?5H2O in 2 : 2 : 1 molar ratio in ethanol. These complexes were characterized by elemental analyses, magnetic susceptibility, molar conductance, spectral (IR, UV–Vis, 1H-NMR, FAB-mass), thermal, fluorescence and solid state d.c. electrical conductivity studies. The complexes are insoluble in water but soluble in DMF and DMSO. The observed molar conductance values indicate non electrolytes. Elemental analyses suggest 1 : 1 stoichiometry, [La(LI–IV)(NO3)(H2O)2] ·?3H2O and [Th(LI–IV)(NO3)2(H2O)2] ·?3H2O. Spectroscopic studies indicate that coordination occurs through phenolic oxygen after deprotonation, nitrogen of azomethine group and bridging bidentate nitrates. The solid state d.c. electrical conductivity indicates semiconducting nature. All the Schiff bases and their La(III) and Th(IV) complexes were evaluated for biological properties; some compounds show promising results.  相似文献   

4.
Four μ- oxamido heterodinuclear complexes, [Cu (oxae) Cr (L)2 ] (NO3) 3, where oxae denotes the N, N'bis (2-aminoethyl) oxamido dianion and L represents 1,10-phenanthroline (phen); 5-nitro-1,10-phenanthroline (NO2-phen); 5-methyl-1, 10-phenanthroline (Me-phen) and 2, 2′-bipyridine (bpy), have been synthesized and characterized by elemental analyses, magnetic moments (at room temperature) and molar conductivity measurements and spectroscopy. It is proposed that these complexes have extended oxamido-bridged structures consisting of a copper (II) ion and a chromium (III) ion, which have a square planar environment and octahedral environment, respectively. The cryomagnetic properties of the [Cu(oxae)Cr(bpy)2(NO3)3(1) and [Cu(oxae)Cr(phen)2](NO3)3(2) complexes have been measured over the range of 4.2–300 K. The leastsquares fit of the experimental data based on the spin Hamiltonian, ? = - 2J?1·?2, the exchange integrals (J) were evaluated as +36.9 cm?1 for 1 and +35.8 cm?1 for 2. The reds have connived that the spin coupling between the adjacent copper (II) and chromium (III) ions through oxamido-bridge in both 1 and 2 is ferromagnetic.  相似文献   

5.
Three new cobalt complexes were synthesized by solid-state reaction at room temperature and the resultant Co complexes reacted with two equivalent oxygen molecules at room temperature to produce the oxygenated complexes [Co·(L1)2·(O2)2](NO3)2·2H2O (L1 = N, N’-bis(4-hydroxyl-3-methoxy-benzyl)-diethylenetriamine), [Co·(L2)2·(O2)2](NO3)2·2H2O (L2 = N, N’-bis(4-hydroxyl-3-methoxy-benzyl)-triethylenetetramine), and [Co·(L3)2·(O2)2](NO3)2·2H2O (L3 = N, N’-bis(4-hydroxyl-3-methoxy-benzyl-tetraethylenepentamine). The oxygenated complexes were characterized by elemental analysis, IR (Infrared), 1H-NMR (Nuclear Magnetic Resonance), and UV-Vis (Ultraviolet Visual) spectrometry, and TG/DTA (Thermogravimetry/Differential Thermal Analysis) analysis, and molar conductance. The coordinated oxygen contents in the oxygenated complexes were also determined by weight method. It was supposed that only one O2 molecule coordinated to the Co ion forming a superoxo type oxygenated complex. Translated from Acta Chimica Sinica, 2006, 64(15): 1517–1522 (in Chinese)  相似文献   

6.
Seven lanthanide complexes [Ln(OPPh3)3(NO3)3] ( 1 – 3 ) (OPPh3 = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh3)4(NO3)2](NO3) ( 4 ), [Ln(OPPh3)3(NO3)3]2 ( 5 – 7 ) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh3 ligand in the air. These complexes were characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1 – 4 are mononuclear complexes formed by OPPh3 ligands and nitrates. The asymmetric units of complexes 5 – 7 consist of two crystallographic‐separate molecules. Complex 1 is self‐assembled to construct a 2D layer‐structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain‐like structure that was assembled by OPPh3 ligands and nitrate ions through C–H ··· O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb3+ (λem = 480, 574 nm) and Eu3+ (λem = 552, 593, 619, 668 nm).  相似文献   

7.
A mesogenic Schiff-base, N,N′-di-(4-decyloxysalicylidene)-1′,3′-diaminobenzene, H2ddsdbz (abbreviated as H2L), that exhibits a nematic mesophase was synthesized and its structure was studied by elemental analysis, mass spectrometry, NMR, and IR spectral techniques. The Schiff-base, H2L, upon condensation with hydrated lanthanide(III) nitrates yields LnIII complexes, [Ln2(LH2)3(NO3)4](NO3)2, where Ln?=?La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho. Analyses of the IR and NMR spectral data imply bidentate Schiff-base through two phenolate oxygen atoms in its zwitterionic form to LnIII, rendering the overall geometry of the complexes as a seven-coordinate polyhedron – possibly distorted mono-capped octahedron. Polarizing optical microscope and differential scanning calorimetry studies reveal that despite H2L being mesogenic, none of the LnIII complexes synthesized under this study exhibits mesomorphism.  相似文献   

8.
Two rare metal coordination complexes of yttrium(III) including 1,10‐phenanthroline, Y(phen)2(NO3)3 and (phenH)2[Y2(pydc)3(NO3)2·6H2O] (phen=1,10‐phenanthroline, pydc=2,6‐pyridinedicarboxylate), and a proton transfer compound (phenH+)2(pydc2?) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra (IR), nuclear magnetic resonance (NMR) and thermal analysis. The proposed structures of yttrium complexes were exhibited. The in vitro biological activities of the newly synthesized complexes have also been investigated against Bacillus coli, Staphylococcus aureus and Candida albicans. The results showed that yttrium(III) complexes including 1,10‐phenanthroline exhibited better antibacterial/antifungal activity than their ligands and corresponding compounds.  相似文献   

9.
香草醛缩多胺Schiff碱Co(II)配合物固相合成及氧合性能研究   总被引:4,自引:0,他引:4  
肖芙蓉  陈鹭  王吉德  武荣兰  岳凡  李静 《化学学报》2006,64(15):1517-1522
采用固相反应合成了三个新的席夫碱钴(II)配合物, 在室温下, 将其与O2作用, 1 mol配合物吸收2 mol O2, 得到三种固态氧合配合物[Co•(L1)2•(O2)2](NO3)2•2H2O [L1N,N-二(4-羟基-3-甲氧基苯亚甲基)二乙烯三胺], [Co•(L2)2•(O2)2](NO3)2•2H2O [L2N,N-二(4-羟基-3-甲氧基苯亚甲基)三乙烯四胺]和[Co•(L3)2•(O2)2](NO3)2•2H2O (L3N,N-二(4-羟基-3-甲氧基苯亚甲基)四乙烯五胺]. 通过元素分析、红外光谱、核磁共振氢谱(1H NMR), TG/DTA、摩尔电导率、紫外等测试手段确定了氧合配合物的组成. 采用失重法测定了氧合配合物中的配位氧, 确定1 mol钴配合物吸收2 mol O2, 其中1 mol O2用来和钴离子配位形成超氧配合物.  相似文献   

10.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:15,16-tribenzo-9,15-dioxacycloheptadeca-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine with 1,4-bis(2-carboxyaldehydephenoxy)butane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by the template effect by reaction of 2,6-diaminopyridine and 1,4-bis (2-carboxyaldehydephenoxy)butane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La (NO3)3 · 6H2O, respectively. The ligand and its metal complexes were characterized by elemental analysis, IR, 1H- and 13C-n.m.r., UV-vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements and mass spectra. All complexes are diamagnetic and the CuII complex is binuclear. The CoII complex was oxidised to CoIII.  相似文献   

11.
在Cu2+存在条件下,利用N-羟乙基-3,3-二甲基-6-硝基吲哚啉螺吡喃分别与乙二胺分子或1,3-丙二胺分子(1,3-diamino-propane,1,3-DAP)发生原位反应,得到了席夫碱配体双-((2-(甲基亚胺甲基)-4-硝基苯酚))阴离子(L1)或2-((3-胺基丙基亚胺)-甲基)-4-硝基苯酚阴离子(L2...  相似文献   

12.
Nine novel heteronuclear complexes of Ln(III)-Cu(II) with salicylidene tetraethylene glycol diamine (SALTTA) have been synthesized and characterized. They have the general formulae [LnCu2(SALTTA)2(NO3)3](NO3)4·3H2O (Ln=La, Pr, Nd, Sm) and [LnCu3(SALTTA)3(NO3)5]-(NO3)4·4H2O (Ln=Gd, Tb, Er, Yb, Y). The IR spectra show that vC=N in the Ln(III)-Cu(II) heteronuclear complexes are splitted up into two peaks with a far distance. It has been confirmed that oxygen atoms in oxyethylene of the ligand are not all coordinated to the central metal ions by both IR and NMR methods.  相似文献   

13.
IntroductionZincisanessentialtraceelementtothelife .Manydiseasesarousedfromadeficiencyofzincelementhavere ceivedconsiderableattention .L α Aminoacidsarebasicunitsofproteins .L α Trytophanisoneoftheeightspeciesofaminoacidsindispensableforlife ,whichhastobeab sorbedfromfoodbecauseitcannotbesynthesizedinthehumanbody .InviewofthecomplexesofL α trytophanandessentialelementsasaddictiveswidelyusedinsuchfieldsasfoodstuff,medicineandcosmetic ,1 3theyhaveabroadenprospectforapplications .Briefly ,ab…  相似文献   

14.
CoII and CoIII complexes containing nitrite and tridentate aromatic amine compounds [bis(6-methyl-2-pyridylmethyl)amine (Me2bpa) and bis(2-pyridylmethyl)amine (bpa)] have been prepared as models of the catalytic center in Co-substituted nitrite reductase: [CoII(Me2bpa)(NO2)Cl]2 · acetone (2), CoII(Me2bpa)(NO2)2 (3), CoII(bpa)(NO2)Cl (4), CoII(bpa)(NO2)2 (5), CoIII(Me2bpa)(NO2)(CO3) (6), and CoIII(bpa)(NO2)3 (7). The X-ray crystal structure analyses of these CoII and CoIII complexes indicated that the geometries of the cobalt centers are distorted octahedral and the Me2bpa and bpa with three nitrogen donors exhibit mer- (2, 3, and 7) and fac-form (4 and 6). The coordination mode of nitrite depends on the cobalt oxidation state, to CoII through the oxygen (nitrito coordination, O- and O,O-coordination) and to CoIII through nitrogen (nitro coordination, N-coordination mode). These findings are consistent with the results of their IR spectra, except that another oxygen of the O-coordinated nitrito group in 3 might interact weakly with CoII according to its IR spectrum. Reductions of the nitrite in 2, 3, 4, and 5 to nitrogen monoxide were not accelerated in the presence of proton, perhaps due to the nitrito coordination in these CoII complexes.  相似文献   

15.
The solid reaction between [Cr(NH3)6]X3(X? = Cl, I, SCN and NO3) and L-α-alanine was studied under continuous rise in temperature and isothermal heating. Under continuous rise in temperature, the main products were [Cr(NCS)3-(NH3)3] (X? = NCS) and [Cr(L-ala)3] (X? = NO3), when [Cr(NH3)6]Cl3 and [Cr(NH3)6]I3 as starting complexes were used; in both cases only the decomposition proceeds. Under isothermal heating at 150°C the main products were [CrCl(NH3)5]-Cl2 (X? = Cl), [Cr(NH3)6]I2 (X? = I), [Cr(NCS)3(NH3)3] (X? = SCN) and [Cr(L-ala)3] (X? = NO3). In those matrix reactions, the ease of anion coordination was: SCN? > Cl? > I? > alanine. For the synthesis of tris(alaninato)chromium(III) complex the most desirable starting complex was [Cr(NH3)6](NO3)3.The solid state reaction between [Cr(en)3]X3 type complexes and NH4X (X? = F, Cl, Br, I and SCN), KX (X? = Cl, Br and I), and NaSCN have been reported by Wendlandt and Stembridge1. They reported that the reaction product in most cases, was cis-[Cr(en)2Y2]X, where Y and X are the same or different anions, depending upon the matrix material employed and the thermal matrix method appears to be a useful new route for the synthesis of bis(ethylendiamine(chromium(III) complexes.In the previous paper2, the solid state reaction between [Cr(NH3)6](NO3)3 and L-amino acids has been utilized in the preparation of tris(amino acidato)chromium(III) complexes. The preparation of [Cr(L-ala)3] by the solid state reaction between [Cr(NH3)6](NO3)3 and L-alanine have been reported. No studies on the effect of the counter-ion have been reported.In this paper, various hexaamminechromium(III) complexes, [Cr(NH3)6]X3 (X? = Cl, I, SCN and NO3), were heated with L-α-alanine under continuous rise in temperature and under isothermal heating at 150°C for studies on the ease of anion coordination. It will seen that the anion which replaces the ammonia in the hexaamminechromium(III) complex comes from either the alanine or counter-ion.  相似文献   

16.
Microcalorimetric measurements at elevated temperatures of the heats of thermal decomposition and iodination have led to values of the standard enthalpies of formation of the following crystalline compounds (values given in kJ mol?1) at 298K: [Cr(η6-1,3,5-C6H3(CH3)3)2] = (63±12); [Cr(η6-C6(CH3)6)2] : -(88±12); [Cr(1,2,3,4,4a,8a-η-C10H8)2] = (407±11); [Cr(CO)3(1,2,3,4,4a,8a-η-C10H8)] = -(258±8). Separate measurements by the vacuum sublimation microcalorimetric technique gave the following values for the enthalpy of sublimation at 298K (kJ mol?1) : [Cr(η6-1,3,5-C6H3(CH3)3)2] = (104±1); [Cr(η6-C6(CH3)6)2] = (119±4); [Cr(CO)3(1,2,3,4,4a,8a-η-C10H8)] = (107±3). From these and other data, the bond enthalpy contributions of the metal-ligand bonds in the gaseous metal complexes were evaluated as follows: [(η6-C6(CH3)6)-Cr] (155±7); [(η6-C6H3(CH3)3)-Cr] (151±6); [(1,2,3,4,4a, 8a-η-C10H8)-Cr](145±6) kJ mol?1]The question of the transferability of the enthalpy contributions of chromium—ligand bonds between organochronium complexes is discussed with aid of information from structural and spectroscopic investigation. The limitations of the procedure are defined.The thermodynamic data are used to discuss various substitution, redistribution and exchange reaction of Cr(η-arene)2 and [Cr(CO)3(η-arene)] compounds.  相似文献   

17.
1,6-Bis(2-formylphenyl) hexane (I) was derived from 1,6-dibromohexane with salicylaldehyde and K2CO3 and the ligand (L) was derived from compound I and 2,6-diaminopyridine. Then, the Cu(II), Ni(II), Pb(II), Zn(II), Cd(II), and La(III) complexes with L were synthesized by the reaction of this ligand and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Zn(NO3)2 · 6H2O, Cd(NO3)2 · 6H2O, and La(NO3)3 · 6H2O, respectively. The ligand and its metal complexes were characterized by elemental analysis, IR, 1H and 13C NMR, UV-Vis spectra, magnetic susceptibility, conductivity measurements, and mass spectra. All complexes are diamagnetic and the Cu(II) complex is binuclear. The article is published in the original.  相似文献   

18.
IR. and Raman spectra of LnONO3 (50–4,000 cm?1, Ln?La, Gd, Eu, and Dy) are reported and discussed. The low frequency region of the spectra reflects the cubic structure of these compounds. The dimensions of the cubic unit cells determined by X-Ray powder diagrams are: 12.81 ± 0.05 Å for EuONO3, 12.69 ± 0.05 Å for GdONO3, and 12.67 ± 0.05 Å for DyONO3. The vibrational frequencies of the nitrato group are consistent with a bidentate nitrate of C2v symmetry. The synthesis of anhydrous Ln (NO3)3 (Ln?La, Gd, Eu, and Dy) by dehydration of the corresponding penta- or hexahydrates is described. The IR. and Raman spectra (50-4,000 cm?1) are analysed. Splitting of the bands point to a complex structure of these compounds. All six vibrational modes of the nitrato group are observed and the data are again consistent with bidentate NO?3 moieties. Finally, an analytical control of the purity of Ln (NO3)3 is suggested.  相似文献   

19.
A new series of Cr (III) complexes [Cr{1-(3-phenoxypropyl)-1H-pyrazole}Cl3]2 (Cr1), [Cr{1-(3-phenoxypropyl)-3,5-dimethyl-1H-pyrazole}Cl3]2 (Cr2 ), and [Cr{1-(3-phenoxypropyl)-3-phenyl-1H-pyrazole}Cl3]2 (Cr3) have been synthesized and characterized by elemental analysis, high-resolution mass spectrometry (HRMS) and IR spectroscopy. Upon activation with methylaluminoxane (MAO), chromium precatalysts Cr2 and Cr3 showed moderate activity in ethylene oligomerization [TOF = 17,900–29,200 mol (ethylene)·mol (Cr)−1·h−1 at 80 °C] with Schultz-Flory distribution of oligomers (K = 0.54–0.66) and production of polymer varying from 2.8 to 6.7 wt.%. On the other hand, under identical oligomerization conditions, Cr1 /MAO behaved as a polymerization catalyst generating predominantly polyethylene (63.7 wt%). The amount of 1-butene is the largest component in the liquid fraction suggesting that these precatalysts operate via a Cossee-Arlman mechanism. The catalytic activities, selectivity and product distribution are quite sensitive to the R-group at the 3- and 5-position of the pyrazolyl ring. Based on the electronic and steric effects of R- substituents, it is possible to stablish a trend of activity: Cr2 (PzMe2) > Cr3 (PzPh) > Cr1 (Pz). Moreover, the effect of oligomerization parameters (cocatalyst, temperature, [Al]/[Cr] molar ratio, time) on the activity and on the product distribution were examined.  相似文献   

20.
The hexanitratolanthanate anion (La(NO3)63?) is an interesting symmetric anion suitable to construct the component of water‐free rare‐earth‐metal ionic liquids. The syntheses and structural characterization of eleven lanthanum nitrate complexes, [Cnmim]3[La(NO3)6] (n=1, 2, 4, 6, 8, 12, 14, 16, 18), including 1,3‐dimethylimidazolium hexanitratolanthanate ([C1mim]3[La(NO3)6], 1 ), 1‐ethyl‐3‐methylimidazolium hexanitratolanthanate ([C2mim]3[La(NO3)6], 2 ), 1‐butyl‐3‐methylimidazolium hexanitratolanthanate ([C4mim]3[La(NO3)6], 3 ), 1‐isobutyl‐3‐methylimidazolium hexanetratolanthanate ([isoC4mim]3[La(NO3)6], 4 ), 1‐methyl‐3‐(3′‐methylbutyl)imidazolium hexanitratolanthanate ([MC4mim]3[La(NO3)6], 5 ), 1‐hexyl‐3‐methylimidazolium hexanitratolanthanate ([C6mim]3[La(NO3)6], 6 ), 1‐methyl‐3‐octylimidazolium hexanitratolanthanate ([C8mim]3[La(NO3)6], 7 ), 1‐dodecyl‐3‐methylimidazolium hexanitratolanthanate ([C12mim]3[La(NO3)6], 8 ), 1‐methyl‐3‐tetradecylimidazolium hexanitratolanthanate ([C14mim]3[La‐(NO3)6], 9 ), 1‐hexadecyl‐3‐methylimid‐azolium hexanitratolanthanum ([C16dmim]3[La(NO3)6], 10 ), and 1‐methyl‐3‐octadecylimidazolium hexanitratolanthanate ([C18mim]3[La(NO3)6], 11 ) are reported. All new compounds were characterized by 1H and 13C NMR, and IR spectroscopy as well as elemental analysis. The crystal structure of compound 1 was determined by using single‐crystal X‐ray diffraction, giving the following crystallographic information: monoclinic; P21/c; a=15.3170 (3), b=14.2340 (2), c=13.8954(2) Å; β=94.3453(15)°, V=3020.80(9) Å3, Z=4, ρ=1.764 g cm?3. The coordination polyhedron around the lanthanum ion is rationalized by six nitrate anions with twelve oxygen atoms. No hydrogen‐bonding network or water molecule was found in 1 . The thermodynamic stability of the new complexes was investigated by using thermogravimetric analysis (TGA). The water‐free hexanitratolanthanate ionic liquids are thermal and moisture stable. Four complexes, namely complexes 8 – 11 , were found to be ionic liquid crystals by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). They all present smectic A liquid‐crystalline phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号