首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Stevia rebaudiana extracts and plant materials are increasingly used as natural sweeteners. Polyphenolic and stevioside compounds contained in S. rebaudiana extracts were separated by comprehensive LC. A polyamine column operated in normal phase mode was used for the first dimension separation (D1), and a UHPLC C18 column operated in reversed phase mode was used for the second dimension separation (D2). The sub-2 μm column (2.1 mm × 30 mm, maintained at 70°C) and the UHPLC pump employed for D2 elution allowed a separation/cycle time of 20 s, with a backpressure oscillating between 805 and 922 bar at 3.4 mL/min. The reduced D2 cycle time allowed 3-12 D2 samplings for each peak eluted by D1. Polyphenolic and stevioside compounds were identified by combining the information coming from the position of the compounds in the 2D plot and UV spectra with that of reference materials.  相似文献   

2.
This paper focuses on the application of RPLC × RPLC to pharmaceutical analysis and addresses the specific problem of separating co-eluting impurities/degradation products that maybe “hidden” within the peak envelope of the active pharmaceutical ingredient (API) and thus may escape detection by conventional methods. A comprehensive two-dimensional liquid chromatograph (LC × LC) was constructed from commercially available HPLC equipment. This system utilizes two independently configurable 2nd dimension binary pumping systems to deliver independent flow rates, gradient profiles and mobile phase compositions to dual Fused-Core secondary columns. Very fast gradient separations (30 s total cycle time) were achieved at ambient temperature without excessive backpressure and without compromising optimal 1st dimension sampling rates. The operation of the interface is demonstrated for the analysis of a 1 mg/ml standard mixture containing 0.05% of a minor component. The practicality of using RPLC × RPLC for the analysis of actual co-eluting pharmaceutical degradation products, by exploiting pH-induced changes in selectivity, is also demonstrated using a three component mixture. This mixture (an API, an oxidation product of the API at 1.0%, w/w, and a photo degradant of the API at 0.5%, w/w) was used to assess the stability indicating nature of an established LC method for analysis of the API.  相似文献   

3.
Comprehensive two-dimensional liquid chromatography (LC?×?LC) has received much attention because it offers much higher peak capacities than separation in a single dimension. The advantageous peak capacity makes it attractive for the separation of complex samples. Various gradient methods have been used in LC?×?LC systems. The use of continuous shift gradient is advantageous because it combines the peak compression effect of full gradient mode and the tailed gradient program in parallel gradient mode. Here, a comparison of LC?×?LC analysis of Chinese herbal medicine with full gradient mode and shift gradient mode in the second dimension was performed. A correlation between the first and second dimensions was found in full gradient mode, and this was significantly reduced with shift gradient mode. The orthogonality increased by 43.7 %. The effective peak distribution area increased significantly, which produced better separation.  相似文献   

4.
The design of a new interface for comprehensive two-dimensional liquid chromatography (LC x LC) is described. To the conventionally used LC x LC system with the loop-type interface consisting of a two-position/ten-port switching valve equipped with two loops, an extra two-position/ten-port switching valve, a detector, a pump and a second column placed in parallel with the column in the second dimension, are added. The features of the interface are that the separation space in the second dimension is significantly enlarged and that the number of fractions transferred from the first to the second dimension can be increased, reducing the risk to lose resolution of the primary dimension. The potential of the system in NPLC x 2RPLC is illustrated with the analysis of a standard mixture and a lemon oil extract. For the lemon oil analysis, the effective peak capacity was increased from 437 using a conventional interface to 1095 with the new interface. RPLC x 2RPLC in combination with reduced modulation times was applied to the analysis of steroids and to the detection of impurities at the 0.05% relative concentration level in a sulfonamide drug sample.  相似文献   

5.
A method was developed to calculate the second dimension retention index of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) data using n-alkanes as reference compounds. The retention times of the C(7)-C(31) alkanes acquired during 24 isothermal experiments cover the 0-6s retention time area in the second dimension retention time space, which makes it possible to calculate the retention indices of target compounds from the corresponding retention time values without the extension of the retention space of the reference compounds. An empirical function was proposed to show the relationship among the second dimension retention time, the temperature of the second dimension column, and the carbon number of the n-alkanes. The proposed function is able to extend the second dimension retention time beyond the reference n-alkanes by increasing the carbon number. The extension of carbon numbers in reference n-alkanes up to two more carbon atoms introduces <10 retention index units (iu) of deviation. The effectiveness of using the proposed method was demonstrated by analyzing a mixture of compound standards in temperature programmed experiments using 6 different initial column temperatures. The standard deviation of the calculated retention index values of the compound standards fluctuated from 1 to 12 iu with a mean standard deviation of 5 iu.  相似文献   

6.
The orthogonality of three columns coupled in two series was studied for the congener specific comprehensive two-dimensional GC separation of polychlorinated biphenyls (PCBs). A non-polar capillary column coated with poly(5%-phenyl–95%-methyl)siloxane was used as the first (1D) column in both series. A polar capillary column coated with 70% cyanopropyl-polysilphenylene-siloxane or a capillary column coated with the ionic liquid 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethane-sulfonyl)imide were used as the second (2D) columns. Nine multi-congener standard PCB solutions containing subsets of all native 209 PCBs, a mixture of 209 PCBs as well as Aroclor 1242 and 1260 formulations were used to study the orthogonality of both column series. Retention times of the corresponding PCB congeners on 1D and 2D columns were used to construct retention time dependences (apex plots) for assessing orthogonality of both columns coupled in series. For a visual assessment of the peak density of PCBs congeners on a retention plane, 2D images were compared. The degree of orthogonality of both column series was, along the visual assessment of distribution of PCBs on the retention plane, evaluated also by Pearson's correlation coefficient, which was found by correlation of retention times tR,i,2D and tR,i,1D of corresponding PCB congeners on both column series. It was demonstrated that the apolar + ionic liquid column series is almost orthogonal both for the 2D separation of PCBs present in Aroclor 1242 and 1260 formulations as well as for the separation of all of 209 PCBs. All toxic, dioxin-like PCBs, with the exception of PCB 118 that overlaps with PCB 106, were resolved by the apolar/ionic liquid series while on the apolar/polar column series three toxic PCBs overlapped (105 + 127, 81 + 148 and 118 + 106).  相似文献   

7.
In the present work, a comprehensive LC system using a microbore HPLC column in the first dimension and a partially porous column in the second dimension was developed and applied to the separation of polyphenolic components in a red wine sample. The performance of the partially porous short column (3.0 cm) was compared to that of a monolithic column, of comparable dimensions. The results obtained demonstrated the possibility to use partially porous columns to obtain fast analyses, using high flow rates, under repetitive gradient conditions and with very brief reconditioning times. A conventional HPLC system was used since the backpressure generated by the shell-packed column, even at very high flow rates, was well within the operational limits. The use of an increased column temperature (60 degrees C) allowed a further pressure-drop decrease, with no stationary phase degradation, or loss in column performance.  相似文献   

8.
A comprehensive, fully automated strategy is demonstrated for HPLC-UV chromatographic method development using ChromSword optimization software. The strategy involves: (1) the automated screening of various column and mobile phase combinations, (2) rational selection of the best starting conditions; and (3) subsequent automated method development to generate optimized separation methods. Pharmaceutical compounds were applied to solve problematic drug impurity separations. ChromSword software automates the screening, optimization, and documentation steps thus reducing the method development time. The strategy was compared to a manual method development approach showing the automated method strategy affords better selectivity in a shorter time.  相似文献   

9.
The present investigation is based on the evaluation of the performance of a comprehensive two-dimensional liquid chromatography (LCxLC) system during method optimization. The LCxLC set-up, operated in normal phase (NP) mode (adsorption) in the first dimension (1D) and reversed-phase (RP) mode in the second dimension (2D), is equipped with a 1D microbore silica column and a 2D monolithic C(18) column with a 10-port two position valve as the interface. A photodiode array detector is used after the 2D separation. A possible cause of peak distorsion because of the immiscibility of the mobile phases employed in the two dimensions is resolved. The optimization of the analytical run time and flow rate for both dimensions and the initial gradient in the 2D is carried out with various standard compounds. The potential and versatility of this LCxLC approach is demonstrated through the separation of 11 standard components, most of them allergens. The latter, which are characterized by a scattered distribution on the 2D space plane, underwent separation on both a hydrophobicity and polarity basis.  相似文献   

10.
Li X  Carr PW 《Journal of chromatography. A》2011,1218(16):2214-2221
Comprehensive two-dimensional liquid chromatography (LC×LC) has received a great deal of attention during the past few years because of its extraordinary resolving power. The biggest advantage of this technique is that very high peak capacities can be generated in a relatively short time. Numerous approaches to maximize the peak capacity in LC×LC have been employed. In this work we investigate the impact of the first dimension mobile phase on selectivity. LC×LC has several potential advantages over one-dimensional LC (1DLC) in that unconventional solvents, at least in reversed-phase LC, can be used. For example, solvents which strongly adsorb in the UV in the first dimension are not problematic in LC×LC. This so because the UV detector is placed after the second dimensional column, as pulses of the first dimension eluent arrive at the second dimensional column, they elute well before the solutes of interest and therefore do not interfere at all with detection of solute peaks. So far, the most widely used solvents in reversed-phase 1DLC are methanol and acetonitrile. However, the "UV advantage" of 2DLC allows us to employ UV active solvents, such as acetone. We compare their differential selectivities to that of acetonitrile for the separation of 23 indole acetic acids of interest in plant biology. We also apply them to the separation of a maize seed extract, a very complex sample. In both sample sets, mobile phase composition can be an important parameter to increase the orthogonality of the two dimensions and thus, to increase the effective peak capacity of LC×LC.  相似文献   

11.
12.
The process of regularly transferring material from the primary column to the secondary column is critical in producing comprehensive two-dimensional separations. A series of calculations have been performed to determine how sampling period, duty cycle, and sampling phase affect (1) the fraction of material transferred from the primary column to the secondary column, (2) the accuracy of primary retention time determination, and (3) the effective peak width along the primary retention axis. The results demonstrate that comprehensive two-dimensional separations can be produced without a substantial loss in quantitative precision and with only a moderate loss in primary column resolution if the sampling period is less than 1.5 times the primary peak standard deviation. The quantitative precision of total peak areas (for duty cycles less than 1.0) and primary retention time determination are rapidly reduced as the sampling period is increased above 1.5 times the primary peak standard deviation.  相似文献   

13.
Abstract

Punica granatum L., commonly known as pomegranate, is an ancient fruit widely consumed all over the world as fresh fruit or juice. In addition, it is extensively used in therapeutic formulas, cosmetics and food seasonings. The fruit is native to Afghanistan, Iran, China and the Indian sub-continent. The pomegranate market has steadily grown, presumably due to the increasing demand of health-conscious consumers for products with potential beneficial effects on human health, due to the synergistic presence of a unique and complex phytochemical composition that enclose anthocyanins, phenolic acids and hydrolysable tannins. Conventionally, for their analysis liquid chromatography is employed even though it can present some drawbacks in terms of resolving power. In this contribution, as a valuable alternative, comprehensive two-dimensional liquid chromatography with “shifted gradients” in the second dimension, was applied for the characterization of three pomegranate samples, leading to the identification of 37 different polyphenolic compounds.  相似文献   

14.
15.
16.
This paper describes a method for the selective screening of organophosphorus pesticides in water. In-tube solid-phase microextraction (SPME) in an open capillary column coupled to capillary liquid chromatography (LC) with UV detection has been used to effect preconcentration, separation and detection of the analytes in the same assembly. For in-tube SPME two capillary columns of the same length and different internal diameters and coating thicknesses have been tested and compared, a 30 cm x 0.25 mm I.D., 0.25 micro m thickness coating column, and a 30 cm x 0.1 mm I.D., 0.1 micro m of coating thickness column. In both columns the coating was 95% dimethylpolysiloxane (PDMS)-5% diphenylpolysiloxane. The proposed methodology provided limits of detections (LODs) for the tested organophosphorus pesticides in the 0.1-10 micro g/L range, whereas the direct injection of the samples onto the capillary LC system provided LODs in the 50-1000 micro g/L range. The sensitivity of the proposed in-tube SPME-capillary LC method is adequate to monitorize the analyte levels in drinking water. Several triazines, polycyclic aromatic hydrocarbons (PAHs), nonylphenol, organochloride pesticides or polybrominated diphenyl ethers (PBDEs) have been evaluated as possible interferents. The reliability of the described method is demonstrated by analysing different real water samples.  相似文献   

17.
Comprehensive two-dimensional chromatography (LC × LC) using combinations of two columns (C18 × CN and C18 × NH2) was employed with electrospray (ESI) mass spectrometry to analyze platycosides from root extract. Based on the capability of the C18, CN and NH2 columns to separate the platycosides, the orthogonality in two-dimensional space according to each combination of columns was predicted from the correlation coefficients between the retention times of the 17 compounds separated by the independent CN and C18 columns, and NH2 and C18 columns. The expected distribution of the peaks was also compared with the two-dimensional plots obtained by practical separation in an LC × LC system. The increased peak capacities using C18 × NH2 allowed three minor components and five isomers of the platycosides to be newly separated, which were not identified with 1D-LC using the individual C18 column, whereas the combination of C18 × CN did not result in any improvement of the separation performance.  相似文献   

18.
Short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures with thousands of isomers and numerous homologs. They are classified as priority candidate persistent organic pollutants under the Stockholm Convention for their persistence, bioaccumulation, and toxicity. Analyzing SCCPs is challenging because of the complexity of the mixtures. Chromatograms of SCCPs acquired using one-dimensional (1D) gas chromatography (GC) contain a large characteristic “peak” with a broad and unresolved profile. Comprehensive two-dimensional GC (GC×GC) shows excellent potential for separating complex mixtures. In this study, GC×GC coupled with micro electron capture detection (μECD) was used to separate and screen SCCPs. The chromatographic parameters, including the GC column types, oven temperature program, and modulation period, were systematically optimized. The SCCP congeners were separated into groups using a DM-1 column connected to a BPX-50 column. The SCCP congeners in technical mixtures were separated according to the number of chlorine substituents for a given carbon chain length and according to the number of carbon atoms plus chlorine atoms for different carbon chain lengths. A fish tissue sample was analyzed to illustrate the feasibility of the GC×GC–μECD method in analyzing biological samples. Over 1,500 compounds were identified in the fish extract, significantly more than were identified using 1D GC. The detection limits for five selected SCCP congeners were between 1 and 5 pg/L using the GC×GC method, and these were significantly lower than those achieved using 1D GC. This method is a good choice for analysis of SCCPs in environmental samples, exhibiting good separation and good sensitivity. Graphical Abstract
Chromatograms of a technical C10–C13 SCCP mixture with a 55 % (w/w) chlorine content obtained using a gas chromatography–electron capture detection (ECD) and b GC×GC–μECD  相似文献   

19.
A rapid and simple method for the direct screening of paraquat (PQ) and diquat (DQ) in olive oil samples is proposed. The sample screening method involves supercritical fluid extraction (SFE) (clean-up followed by the extraction of the analytes) followed by continuous flow electrochemical detection. Those samples for which the total concentration is close to or above the threshold limit established by the Columbian Society for Social Protection (0.05mugg(-1)) are subsequently analyzed by liquid chromatography (LC) with diode array detection (DAD). This confirmation method allows the determination of PQ and DQ in the range between 0.04 and 1.0mugg(-1), with average relative standard deviations lower than 3.5%, and 0.003 and 0.002mugg(-1) detection limits for PQ and DQ, respectively. The proposed arrangement opens up interesting prospects for the direct determination of polar pesticides in complex samples with a good throughput and a high level of automation.  相似文献   

20.
Gradient elution provides significantly higher peak capacity in comparison to the isocratic elution mode, hence it is very useful in online comprehensive two-dimensional liquid chromatography (LC). We compared suitability of five commercial core-shell columns and one monolithic column for fast gradients in the second LC dimension, where the time of separation is strictly limited by the fraction cycle time. In two-dimensional reversed-phase systems with partially correlated retention, the resolution, the peak capacity, and the regularity of coverage of the second-dimension retention space can be improved by appropriate adjusting the gradient time and the gradient range to suit the sample properties. We developed a new strategy for adjusting the gradient mobile phase composition range in the second-dimension, employing the retention data of representative sample standards characterizing the sample properties, which can be calibrated using the reference alkylbenzene series. Optimized second-dimension gradients with single-step or segmented profiles covering two or more fraction ranges, employed for the separation of subsequent fractions from the first-dimension, improve significantly the resolution, the separation time, and the regularity of coverage of the two-dimensional retention plane. The approach was applied to the two-dimensional comprehensive separation of phenolic acids and flavonoid compounds occurring as natural antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号