首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The experimental investigations were carried out in order to have detailed information on the flow structure around perforated cylinders using high-image density Particle Image Velocimetry technique in shallow water flow. The depth-averaged free-stream velocity was kept constant as U=100 mm/s corresponding to the Reynolds number of Re=10 000 based on the perforated cylinder diameter. In order to analyze the effect of porosity, β on the flow structure, the porosities in the range of 0.1≤β≤0.8 with an increment of 0.1 were used and the results were compared with the bare cylinder case by means of velocity and vorticity contours, turbulent kinetic energy, Reynolds shear stress and streamline topologies. It was concluded that the porosity, β had a substantial effect on the control of large-scale vortical structures downstream of the cylinder in which the shear layers were elongated, fluctuations were significantly attenuated and formation of Karman Vortex Street was successfully prevented by the use of perforated cylinders.  相似文献   

2.
The control of the unsteady flow structure formed behind a cylinder placed horizontally in shallow water was analyzed experimentally using bare cylinder and cylinders with cavities having square and rectangular geometries, respectively. Reynolds number, Froude number and water height had been chosen as 5000, 0.27 and 90 mm, respectively and also these parameters were kept constant for all experiments. To consider the influence of height (h), the cylinder level was located at various heights from h: 0 mm to 60 mm. Furthermore, cavity angle (a) had been selected from 0°, 80°, 85°, 90° and 95° to consider influence of cavity angle on flow. With the help of Particle Image Velocimetry (PIV), average velocity vectors were measured in two dimensions at many points simultaneously in a planar flow area. The results uncovered that large negative counter was observed at h: 37.5 mm in bare cylinder as well as cylinders having square and rectangular cavities at h: 45 mm. Also, no negative counter was observed for cylinders having rectangular cavity at h: 0 mm and a: 90° and 95° due to the bottom effect. Due to surface effects, a foci point was formed in all cylinders where close to the surface and close to the base. Two foci points and a saddle point were seen as they moved away from the surface for all cylinders. Also, the smallest vortex region was observed for cylinders having rectangular cavity at h: 37.5 mm and a: 90° and 95° in whole cylinders. Also, the highest drag coefficient (Cd) value was obtained for cylinder having square cavity at h: 52.5 mm and a: 80° while the highest drag coefficient value was obtained for cylinder having rectangular cavity at h: 37.5 mm and a: 95°.  相似文献   

3.
Unsteady problems are solved numerically for the system of one-dimensional quasilinear equations describing the flow in the capillaries of the circulatory system and the mass transfer between a capillary and the surrounding tissue. The effect of oscillations of the entrance pressure and the passage of a protein concentration jump on the characteristics of the system is investigated. The influence of the degree and nonuniformity of capillary wall permeability and lymphatic drainage factors is also examined. The sphere of applicability of the equations and the possibility of an analytical investigation of capillary flow are discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 14–20, July–August, 1986.  相似文献   

4.
5.
6.
The laws of propagation of axisymmetric normal modes in a hollow cylinder filled with and surrounded by fluid media are investigated. Dispersion curves are plotted, exhibiting functional relations between the complex propagation constant and the dimensionless frequency. Distinctive attributes of the dispersion curves and the energy characteristics of the investigated waveguide structure are analyzed.Institute of Hydromechanics, National Academy of Sciences of Ukraine, Kiev. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 30, No. 9, pp. 15–23, September, 1994.  相似文献   

7.
In the present experimental investigation the surface pressure distribution, vortex shedding frequency, and the wake flow behind a porous circular cylinder are studied when continuous suction or blowing is applied through the cylinder walls. It is found that even moderate levels of suction/blowing (5% of the oncoming streamwise velocity) have a large impact on the flow around the cylinder. Suction delays separation contributing to a narrower wake width, and a corresponding reduction of drag, whereas blowing shows the opposite behaviour. Both uniform suction and blowing display unexpected flow features which are analysed in detail. Suction shows a decrease of the turbulence intensity throughout the whole wake when compared with the natural case, whilst blowing only shows an effect up to five diameters downstream of the cylinder. The drag on the cylinder is shown to increase linearly with the blowing rate, whereas for suction there is a drastic decrease at a specific suction rate. This is shown to be an effect of the separation point moving towards the rear part of the cylinder, similar to what happens when transition to turbulence occurs in the boundary layer on a solid cylinder. The suction/blowing rate can empirically be represented by an effective Reynolds number for the solid cylinder, and an analytical expression for this Reynolds number representation is proposed and verified. Flow visualizations expose the complexity of the flow field in the near wake of the cylinder, and image averaging enables the retrieval of quantitative information, such as the vortex formation length.  相似文献   

8.
Results of experiments with a turbulent flow around a transversely aligned circular cylinder located at identical distances from the walls of a rectangular channel are reported. Data on averaged velocity fields around the cylinder are obtained by means of particle image velocimetry (PIV). Based on these fields, the near wake behind the cylinder is studied, and the kinematic characteristics for flow regimes with and without cavitation are compared. Based on the vector fields of averaged velocity, the angles of separation of the boundary layer from the cylinder surface in the considered flow regimes are determined. The drag coefficients of the cylinder for different flow regimes are calculated. It is demonstrated that the vortex region behind the cylinder and the drag coefficient of the cylinder increase in the case with cavitation. It is also shown that vortex shedding from the cylinder may be irregular, despite the fact that this process is quasi-periodic for most of the time.  相似文献   

9.
10.
Although vortex-induced vibration (VIV) has been extensively studied, much of existing literature deals with uniform flow in the absence of a boundary. The VIV flow field of a structure close to a boundary generally remains unexplored, but it can have important engineering implications, such as pipeline scour if the boundary is an erodible seabed. In this paper, laboratory experiments are performed to investigate the flow characteristics of an elastically mounted circular cylinder undergoing VIV, and a rigid plane boundary is considered to simplify the problem. The initial gap-to-diameter ratio is fixed at 0.8, and six different reduced velocities are considered. The velocity field is measured using a high resolution particle image velocimetry (PIV) system, which has several advantages over traditional PIV systems, including high sampling rate and the ability to mitigate scatter of laser light near the boundary, allowing accurate measurements at the viscous sublayer. This paper presents the vibration amplitude and oscillation frequency for different Vr; in addition, the mean velocity field, turbulence characteristics, vortex behavior, gap flow velocity, and normal/shear stresses on the boundary were measured/calculated, leading to new insights on the flow field behavior.  相似文献   

11.
The seepage of water from a system of channels and irrigation furrows and its interaction with the ground water are investigated in relation to such factors as the capillarity of the soil and the evaporation from the free surface, and their combined effect on the flow structure is evaluated. On the basis of the results of computer calculations the dependence of the seepage rate and the capillary spread on the profile and width of the sources and the distance between them, the head, and the thickness of the soil layer is analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 98–104, March–April, 1991.The authors wish to thank P. Ya. Kochina and N. N. Verigin for useful advice and comments.  相似文献   

12.
The separated shear layer in the near wake of a circular cylinder was investigated using a single hot wire probe, with special attention given to the shear layer instability characteristics. Without end plates to force parallel vortex shedding, the critical Reynolds number for the onset of the instability was 740. The present data, together with all previously published data, show that the ratio of the instability frequency fsl to the vortex shedding frequency fv varies as Re0.65, which is in agreement with the Re0.67 dependence obtained by Prasad and Williamson [1997, J Fluid Mech 333:375–402]. However, the distribution of fsl/fv and the spectra of the longitudinal velocity fluctuation (u) suggest that, on either side of Re=5,000, the shear layer exhibits lower and upper subcritical regimes, in support of the observations by Norberg [1987, publication no. 87/2, Chalmers University of Technology, Sweden] and Prasad and Williamson [1997, J Fluid Mech 343:235–265]. The spectra of u provide strong evidence for the occurrence of vortex pairing in wake shear layers, suggesting that the near wake develops in a similar manner to a mixing layer.  相似文献   

13.
14.
We consider the longitudinal steady nonlinear hydromagnetic convection flow over a permeable vertical cylinder in a porous medium. We assume that both the mainstream velocity at the outer edge of the boundary layer and the surface temperature of the cylinder vary linearly with axial distance from the leading edge, and extend the existing literature by including the nonlinear density temperature variation, magnetic field, and heat source/sink.  相似文献   

15.
Flow of an incompressible viscous fluid contained in a cylindrical vessel (radius R, height H) is considered. Each of the cylinder endwalls is split into two parts which rotate steadily about the central axis with different rotation rates: the inner disk (r < r1) rotating at Ω1, and the outer annulus (r1 < r < R) rotating at Ω2. Numerical solutions to the axisymmetric Navier-Stokes equations are secured for small system Ekman numbers E ( v/(ΩH2)). In the linear regime, when the Rossby number Ro , the numerical results are shown to be compatible with the theoretical prediction as well as the available experimental measurements. Emphasis is placed on the results in the nonlinear regime in which Ro is finite. Details of the structures of azimuthai and meridional flows are presented by the numerical results. For a fixed Ekman number, the gross features of the flow remain qualitatively unchanged as Ro increases. The meridional flows are characterized by two circulation cells. The shear layer is a region of intense axial flow toward the endwall and of vanishing radial velocity. The thicknesses of the shear layer near r = r1 and the Ekman layer on the endwall scale with E and E , respectively. The numerical results are consistent with these scalings.  相似文献   

16.
A two-phase flow around a body has scarcely been studied until now, though the flow is used in many industrial components. The cross flows around a spacer in a fuel assembly of light water reactors (LWR) and tube supports in a steam generator are closely related to the long-term reliability and the safety. The present study has been planned to clarify the two-phase flow and heat transfer characteristics around a body including the unknown complicated flow behavior. In the first report, the flow characteristics near and behind a cylinder which was located in a vertical upward air-water bubbly flow were investigated. From the observation of the flow patterns and the measurements of the distributions of void fraction, liquid velocity and static pressure, it is revealed that the vortex flow and the change of the static pressure and liquid velocity distribution around the cylinder resulted in the large distortion of the void fraction distribution around the cylinder. The most noticeable phenomena in the wake were that the peaks of the local void fraction appeared in the vicinity of the cylinder surface near the separation point and in the wake behind the cylinder.  相似文献   

17.
The results of an experimental investigation on the flow field around submerged structures on horizontal plane beds, measured by an acoustic Doppler velocimeter (ADV), are presented. Experiments were conducted for various conditions of submergence, having submergence factors ranging from 1.0 to 2.0 and average flow velocity ranging from 0.25 to 0.51 m/s. The Froude number and the Reynolds number of the approaching flow for different runs are in the range of 0.18–0.42 and 50 000–76 500, respectively. The vertical distributions of time-averaged three dimensional velocity components and turbulence intensity components at different radial distances from the submerged structures are plotted. Deceleration and acceleration of the approaching flow around the submerged body are evident from the vertical distributions of the horizontal velocity component, whereas the lifting and diving nature of the flow are indicated by the vertical velocity component distributions. The vertical distributions of the horizontal velocity component indicate reduction of 30% of the non-dimensional time-averaged horizontal velocity component magnitude for the cylinder of diameter 11.5 cm in comparison to the cylinder of diameter 10 cm. Also, there is an increase of 10–25% in the horizontal velocity component at different radial sections. The flow is three dimensional in the downstream of the submerged structure. The velocity and the turbulent intensity components are also well predicted by FLUENT. The flow characteristics in the wake and the induced bed shear stress are also analyzed with FLUENT.The profiles of non-dimensional shear velocity deviate from the log law in the wake and the far downstream directions. The scour prone regions may be identified from the profiles of the induced bed shear stress around the submerged structure.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号