首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Model elastic inks were formulated, rheologically characterised in shear and extension, and printed via flexography to assess the impact of ink elasticity on print uniformity. Flexography is a roll-to-roll printing process with great potential in the mass production of printed electronics for which understanding layer uniformity and the influence of rheology is of critical importance. A new set of flexo-printable Boger fluids was formulated by blending polyvinyl alcohol and high molecular weight polyacrylamide to provide inks of varying elasticity. During print trials, the phenomenon of viscous fingering was observed in all prints, with those of the Newtonian ink exhibiting a continuous striping in the printing direction. Increasing elasticity significantly influenced this continuity, disrupting it and leading to a quantifiable decrease in the overall relative size of the printed finger features. As such, ink elasticity was seen to have a profound effect on flexographic printing uniformity, showing the rheological tuning of inks may be a route to obtaining specific printed features.  相似文献   

2.
聚合物分子模型的Brown动力学模拟   总被引:4,自引:2,他引:2  
方建农  范西俊 《力学进展》1999,29(1):112-120
介绍了研究聚合物分子模拟流变性质的Brown动力学模拟方法,综述了有关这方面的研究工作.在通常情况下,将分子模型的数值模拟与求解流动守恒方程的数值解法相结合,便有可能用分子模型去代替连续介质力学的本构方程,来模拟聚合物流体的复杂流动.本文介绍了这一方法的产生背景、最新进展以及优点.   相似文献   

3.
Graphene-based materials are intriguing from the perspective of fundamental science and technology because they are non-toxic, chemically and thermally tolerant, and mechanically robust. Graphene exhibits superior electrical conductivity, high surface area and a broad electrochemical window that may be particularly advantageous for their applications in energy storage devices. In addition, graphene can be prepared in the form of a colloidal suspension with adjustable solubility and thus is suitable for printing applications and offers both transparency and good conductivity at the same time. In this review, applications of graphene in solar cells, batteries, supercapacitors and fuel cells are summarized with the latest developments. Furthermore, graphene as a conductive ink for printed electronics is also discussed.  相似文献   

4.
As one of the most rapidly expanding materials, hydrogels have gained increasing attention in a variety of fields due to their biocompatibility, degradability and hydrophilic properties, as well as their remarkable adhesion and stretchability to adapt to different surfaces. Hydrogels combined with carbon-based materials possess enhanced properties and new functionalities, in particular, conductive hydrogels have become a new area of research in the field of materials science. This review aims to provide a comprehensive overview and up-to-date examination of recent developments in the synthesis, properties and applications of conductive hydrogels incorporating several typical carbon nanoparticles such as carbon nanotubes, graphene, carbon dots and carbon nanofibers. We summarize key techniques and mechanisms for synthesizing various composite hydrogels with exceptional properties, and represented applications such as wearable sensors, temperature sensors, supercapacitors and human-computer interaction reported recently. The mechanical, electrical and sensing properties of carbon nanoparticles conductive hydrogels are thoroughly analyzed to disclose the role of carbon nanoparticles in these hydrogels and key factors in the microstructure. Finally, future development of conductive hydrogels based on carbon nanoparticles is discussed including the challenges and possible solutions in terms of microstructure optimization, mechanical and other properties, and promising applications in wearable electronics and multifunctional materials.  相似文献   

5.
Screen-printing is a cost-effective method for the mass manufacture of zirconia-based solid oxide fuel cells (SOFCs) and oxygen separation membranes. The present work outlines an investigation into the leveling, thixotropic, and screen-printing characteristics of concentrated zirconia inks by a variety of rheological and imaging methods. A combination of viscosity, shear rate jump experiments, creep and recovery analysis, and yield stress measurements were used to assess ink thixotropy. Oscillatory rheometry and scanning electron microscopy/optical microscopy revealed a consistent effect of ethyl cellulose (binder) content upon the thixotropic and leveling characteristics of zirconia inks. While the yield stress (τ 0), extent of recovery R(%), and rate of recovery (K) increase with increasing binder content, so did the surface roughness and thickness of the screen-printed films. Increasing the binder content not only increases the network strength of the thick films but also leads to increased leveling time. As a result, rheological modifiers are proposed to be necessary to improve the leveling characteristics of zirconia inks without losing the green strength of the thick films.  相似文献   

6.
Explicit results are presented for the complete rheological properties of dilute suspensions of rigid, axisymmetric Brownian particles possessing fore-aft symmetry, when suspended in a Newtonian liquid subjected to a general three-dimensional shearing flow, either steady or unsteady. It is demonstrated that these rheological properties can be expressed in terms of five fundamental material constants (exclusive of the solvent viscosity), which depend only upon the sizes and shapes of the suspended particles. Expressions are presented for these scalar constants for a number of solids of revolution, including spheroids, dumbbells of arbitrary aspect ratio and long slender bodies. These are employed to calculate rheological properties for a variety of different shear flows, including uniaxial and biaxial extensional flows, simple shear flows, and general two-dimensional shear flows. It is demonstrated that the rheological properties appropriate to a general two-dimensional shear flow can be deduced immediately from those for a simple shear flow. This observation greatly extends the utility of much of the prior Couette flow literature, especially the extensive numerical calculations of Scheraga et al. (1951, 1955).The commonality of many disparate results dispersed and diffused in earlier publications is emphasized, and presented from a unified hydrodynamic viewpoint.  相似文献   

7.
8.
The rheological properties of complex fluid interfaces are of prime importance in a number of technological and biological applications. Whereas several methods have been proposed to measure the surface rheological properties, it remains an intrinsically challenging problem due to the small forces and torques involved and due to the intricate coupling between interfacial and bulk flows. In the present work, a double wall-ring geometry to measure the viscoelastic properties of interfaces in shear flows is presented. The geometry can be used in combination with a modern rotational rheometer. A numerical analysis of the flow field as a function of the surface viscoelastic properties is presented to evaluate the non-linearities in the surface velocity profile at a low Boussinesq number. The sensitivity of the geometry, as well as its applicability, are demonstrated using some reference Newtonian and viscoelastic fluids. Oscillatory and steady shear measurements on these reference complex fluid interfaces demonstrate the intrinsic sensitivity, the accuracy, and the dynamic range of the geometry when used in combination with a sensitive rheometer.  相似文献   

9.
In this paper the effect of thixotropy in the hydrodynamic behavior of thin films is studied. The simple problem of leveling on a horizontal substrate is considered. The rheological properties of the material are assumed to evolve over time due purely to changes in its internal structure. These changes are modeled in terms of a single structural variable. Neither elastic nor yielding effects are taken into account. More specifically, two distinct rheological models are considered: the simple model proposed by Moore and the more complex model proposed by Baravanian et al. These models exhibit a large range of variation for the liquid viscosity across the film thickness. After deriving the hydrodynamic equations governing leveling flows with the standard assumptions required by the lubrication approximation and running time-dependent numerical simulations, the nonlinear leveling history of the liquid can be predicted as a function of the initial microstructural state, rheological parameters, and initial disturbance of the liquid free surface. The main effort of this work is devoted to devising approximation schemes which lead to significant simplifications of the governing equations and their numerical computations. By approximating the inverse of viscosity as a monotonic function between its substrate and free-surface values, excellent agreement is found for the film amplitude, irrespective of the values of the rheological parameters of both models. Finally, a linear analysis yields a generalization of the Orchard’s law of leveling for Newtonian liquids to take into account the effect of thixotropy.  相似文献   

10.
Since 1942 Archie??s law is used every day to estimate, from electrical measurements, the quantity of oil present in oil fields. In this article, we perform the first experimental analysis of electric conductivity in well controlled models of porous media. We used microfluidic networks (called micromodels in the oil industry jargon), incorporating thousands of pores, with controlled wettability. Different electrode and pore geometries are considered. In all cases the evolution of the conductivity with the conductive fluid fraction (??saturation??) clearly reveals the presence of percolation thresholds, signaling that as the fraction of the conductive fluid decreases below some critical value, there are no more pathways involving only channels entirely filled with the conductive fluid that connect the electrodes. This behavior is observed in all cases, for all the network/electrode geometries and wetting properties we investigated, and is consequently likely to reflect a genuine behavior for microfluidic ??2D?? networks. The existing models??based on percolation theory or on mean field approach??reproduce correctly the structure of this behavior, but generally at a semi-quantitative level. The most successful case is obtained with the effective medium theory (EMT) model, with drainage and perpendicular electrodes. This outcome suggests that, despite the complexity of these systems, very simple models can describe correctly the physics of the system. Nonetheless, more precise modeling requires case-by-case studies. Our results are consistent with the current body of knowledge accumulated for decades on three-dimensional samples. The key point is that in 3D systems, owing to topological reasons, the threshold is extremely low in terms of water saturations. Archie??s law completely neglects the threshold effect. Nonetheless the percolation threshold should not be overlooked, and modeling should take this aspect systematically into account, as it is already done by several investigators.  相似文献   

11.
The inks used in gravure-offset printing are non-Newtonian fluids with higher viscosities and lower surface tensions compared to Newtonian fluids. This paper examines the transfer of a non-Newtonian ink between two parallel plates when the top plate is moved upward with a constant velocity while the bottom plate is held fixed. Numerical simulations were carried out using the Carreau model to explore the behavior of a non-Newtonian ink in gravure-offset printing. The volume of fluid (VOF) model was adopted to demonstrate the stretching and break-up behaviors of the ink. The results indicate that the ink transfer ratio is greatly influenced by the contact angle, especially the contact angle at the upper plate (α). For lower values of α, oscillatory or unstable behavior of the position of minimum thickness of the ink between the two parallel plates during the stretching period is observed. This oscillation gradually diminishes as the contact angle at the upper plate is increased. Moreover, the number of satellite droplets increases as the velocity of the upper plate is increased. The surface tension of the conductive ink shows a positive impact on the ink transfer ratio to the upper plate. Indeed, the velocity of the upper plate has a significant influence on the ink transfer in gravure-offset printing when the Capillary number (Ca) is greater than 1 and the surface tension dominates over the ink transfer process when Ca is less than 1.  相似文献   

12.
Birefringent strands are key to understanding polymeric non-Newtonian flows, especially in extension. Utilising microfluidic extensional flow oscillatory rheometry coupled with microvelocimetry (μ-PIV), we report experiments on the genesis, steady state and decay of such strands, together with rheological consequences. For closely monodisperse atactic polystyrene, we report massive effects of the polymer on flow even at low concentrations. The often observed startup “overshoot” in stress and birefringence is observed at unprecedented dilution and discussed in terms of the local strain rate. Strand decay shows pronounced hysteresis. These factors are most important in modelling real flows such as cyclic and capillary entrance flows. Even with the closely monodisperse and well-characterised samples used, residual polydispersity plays a vital role in flow behaviour.  相似文献   

13.
This study involves a theoretical formulation of the stream-tube method in non-stationary flows. Initially, this approach allowed flow computations by determining an unknown transformation between the physical domain and a mapped domain where the streamlines are rectilinear and parallel. To take into account vortex zones, we define local transformations of subregions of the physical domain that are mapped into rectangular domains where the transformed streamlines are still parallel and straight. The local functions must be determined numerically from the governing equations and boundary conditions put together with compatibility equations. The method enables to compute streamlines and flow data at every time, using distinguishing properties, as verification of mass conservation and definition of rectangular meshes allowing to adopt finite-difference schemes. The numerical simulations concern different non-Newtonian fluids under various geometrical and kinematic specifications related to flows between concentric and eccentric cylinders, leading to comparisons with literature data. The results also highlight the influence of the rheological properties on the flow characteristics in unsteady conditions.  相似文献   

14.
以氯化钠(NaCl)作为致孔剂与流变性能调节剂,碳纤维(CF)作为增强填料与流变性能调节剂,苯乙炔基封端聚酰胺酸溶液(PAA)作为基体树脂,配制适用于直书写3D打印的复合墨水,室温下打印成形后经热固化处理和NaCl刻蚀去除后制备了多孔热固性聚酰亚胺/碳纤维(TSPI/CF)复合材料. 研究表明:NaCl与CF对复合墨水的流变学性能具有好的调节作用;打印制备的TSPI/CF复合材料具有低的各向同性尺寸收缩和优异的耐热性能,且耐热性能随着CF含量的增加而提高;CF含量升高,TSPI/CF复合材料的孔隙率提高,平均孔径降低,力学性能增强;多孔TSPI/CF复合材料表现出优异的储油、出油性能以及浸油摩擦学性能.   相似文献   

15.
The introduction of carbon black in a polyamide matrix allows one to obtain conductive materials because of the formation of a filler network. Resulting electrical properties depend, among others, on the processing conditions. In a first part, we investigate the influence of mixing conditions (rotor speed, temperature, mixing time) on electrical conductivity. Then, in a second part, we try to characterize the conducting network by rheological measurements and to establish relationships between rheological parameters and electrical properties. For that purpose, we propose to perform successive strain sweep experiments at constant frequency, from 0.5 to 100%, then from 100 to 0.5%, and finally, again, from 0.5 to 100%. Between two successive strain sweeps, we observe a drop in the moduli values that can be attributed to the breakdown of the carbon black network. A clear relationship is established between rheological and electrical properties of the compounds. Moreover, we propose a presentation of the rheological data that permits to rank the samples according to the strength of the carbon black network.  相似文献   

16.
This study considers numerical applications of a finite-volume method to steady non-isothermal flows in geometries close to a single-screw extruder. Two geometrical configurations of the channel, with gap and zero gap, are investigated. The simulations concern incompressible fluids obeying different constitutive equations: Newtonian, generalized Newtonian with shear-thinning properties (Carreau–Yasuda law), and two viscoelastic differential models, the upper convected maxwell (UCM) and the Phan–Thien/Tanner (PTT). The temperature dependence is described by a Williams–Landel–Ferry (WLF) equation. For discretizing the equations and unknowns, we use a staggered grid with a QUICK scheme for the convective-type terms and solve the set of governing equations by a decoupled algorithm, stabilized by a pseudo-transient stress term and an elastic viscous stress splitting (EVSS) technique, in the viscoelastic case for the UCM model. The numerical results enable us to state the influence of temperature and rheological properties on the flow characteristics in the geometries investigated and underline the complex behaviour of the materials in such configurations.  相似文献   

17.
18.
This paper describes exact solutions to the response of both the elastic and rigid dumbbell models to a steady simple shear flow in a channel having a length scale comparable to the dumbbells themselves. Results are given for rheological properties over the entire range of the ratio of the channel width to the length of the dumbbell. It is found that both models lead to a decrease in viscosity as the channel is reduced in size with the elastic dumbbell predicting a stronger dependence on that parameter compared with the rigid dumbbell. The elastic dumbbell predicts shear independent rheological properties whereas the rigid dumbell predicts shear thinning as in the case of unbounded flows. The rate of shear thinning, however, decreases with decreasing channel width.  相似文献   

19.
The numerical simulation of some non-Newtonian effects in wall and wall-free turbulent flows, such as drag reduction in pipe flows or the decrease in transverse normal Reynolds stresses, has been attempted in the past with a limited degree of success on the basis of modified wall functions applied to traditional turbulence models (kε), rather than through more realistic rheological constitutive equations. In this work, it is qualitatively shown that if the viscosity function of a generalised Newtonian fluid is assumed to depend on the third invariant of the rate of deformation tensor, there is an increase of the viscous diffusion terms, but especially, of the dissipation of turbulence kinetic energy by a factor equal to the Trouton ratio of the fluid, divided by the Trouton ratio of the solvent, thus indicating a possible way to improve rheological–turbulence modelling.  相似文献   

20.
A robust finite volume method for viscoelastic flow analysis on general unstructured meshes is developed. It is built upon a general‐purpose stabilization framework for high Weissenberg number flows. The numerical framework provides full combinatorial flexibility between different kinds of rheological models on the one hand, and effective stabilization methods on the other hand. A special emphasis is put on the velocity‐stress‐coupling on colocated computational grids. Using special face interpolation techniques, a semi‐implicit stress interpolation correction is proposed to correct the cell‐face interpolation of the stress in the divergence operator of the momentum balance. Investigating the entry‐flow problem of the 4:1 contraction benchmark, we demonstrate that the numerical methods are robust over a wide range of Weissenberg numbers and significantly alleviate the high Weissenberg number problem. The accuracy of the results is evaluated in a detailed mesh convergence study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号