首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two-electron oxidation of the lithium salts of the heterodichalcogenidoimidodiphosphinate anions [(EP (i)Pr 2)(TeP (i)Pr 2)N] (-) ( 1a, E = S; 1b, E = Se) with iodine yields cyclic cations [(EP (i)Pr 2)(TeP (i)Pr 2)N] (+) as their iodide salts [(SP (i)Pr 2)(TeP (i)Pr 2)N]I ( 2a) and [(SeP (i)Pr 2)(TeP (i)Pr 2)N]I ( 2b). The five-membered rings in 2a and 2b both display an elongated E-Te bond as a consequence of an interaction between tellurium and the iodide anion. One-electron reduction of 2a and 2b with cobaltocene produces the neutral dimers (EP (i)Pr 2NP (i)Pr 2Te-) 2 ( 3a, E = S; 3b, E = Se), which are connected exclusively through a Te-Te bond. Two-electron reduction of 2a and 2b with 2 equiv of cobaltocene regenerates the corresponding dichalcogenidoimidodiphosphinate anions as ion-separated cobaltocenium salts Cp 2Co[(EP (i)Pr 2)(TeP (i)Pr 2)N] ( 4a, E = S; 4b, E = Se). The ditellurido analogue Cp 2Co[(TeP (i)Pr 2) 2N] ( 4c) has been prepared in the same manner for comparison. Density functional theory calculations reveal that the preferential interaction of the iodide anion with tellurium is determined by the polarization of the lowest unoccupied molecular orbital [sigma*(E-Te)] of the cations in 2a and 2b toward tellurium and that the formation of the dimers 3a and 3b with a central Te-Te linkage is energetically more favorable than the structural isomers with either E-Te or E-E bonds. Compounds 2a, 2b, 3a, 3b, 4a, 4b, and 4c have been characterized in solution by multinuclear NMR spectroscopy and in the solid state by X-ray crystallography.  相似文献   

2.
A series of nickel(ii) complexes of the type [R-PNP]Ni(ER') ([R-PNP](-) = [N(o-C(6)H(4)PR(2))(2)](-); R = Ph, (i)Pr, Cy; E = NH, O, S; R' = Ph, (t)Bu) featuring unsupported, covalently bound pi-donor ligands have been prepared and characterized. The metathetical reactions of [R-PNP]NiCl (R = Ph, (i)Pr, Cy) with LiNHPh, NaOPh, or NaSPh, respectively, produced the corresponding anilide [R-PNP]Ni(NHPh), phenolate [R-PNP]Ni(OPh), and thiophenolate [R-PNP]Ni(SPh) derivatives. Treatment of [Ph-PNP]NiCl with either LiNH(t)Bu or NaO(t)Bu generated tert-butyl amide [Ph-PNP]Ni(NH(t)Bu) and tert-butoxide [Ph-PNP]Ni(O(t)Bu), respectively. In contrast, attempts to prepare analogous tert-butyl amide and tert-butoxide complexes of [(i)Pr-PNP](-) or [Cy-PNP](-) were not successful. Protonolysis studies of these nickel(ii)-heteroatom complexes revealed the basic reactivity of these pi-donor ligands. The basicity follows the order NH(t)Bu > O(t)Bu > NHPh > OPh > SPh. In addition to solution NMR spectroscopic data for all new compounds, X-ray structures of [(i)Pr-PNP]Ni(NHPh) and [(i)Pr-PNP]Ni(OPh) are presented.  相似文献   

3.
A comparison of the square-planar complexes of group 10 (Pd(II), Pt(II)) and 16 (Se(II), Te(II)) centers with the tetraisopropyldiselenoimidodiphosphinate anion, [N((i)Pr2PSe)2](-), is made on the basis of the results of a solid-state (31)P, (77)Se, (125)Te, and (195)Pt NMR investigation. Density functional theory calculations of the respective chemical shift and (14)N electric field gradient tensors in these compounds complement the experimental results. The NMR spectra were analyzed to determine the respective phosphorus, selenium, tellurium, and platinum chemical shift tensors along with numerous indirect spin-spin coupling constants. Special attention was given to observed differences in the NMR parameters for the transition metal and main-group square-planar complexes. Residual dipolar coupling between (14)N and (31)P, not observed in the solid-state (31)P NMR spectra of the Pd(II) and Pt(II) complexes, was observed at 4.7 and 7.0 T for M[N((i)Pr 2PSe)2]2(M = Se, Te) yielding average values of R((31)P, (14)N)eff = 890 Hz, CQ((14)N) = 2.5 MHz, (1) J( (31)P, (14)N) iso= 15 Hz, alpha = 90 degrees , beta = 17 degrees . The span, Omega, and calculated orientation of the selenium chemical shift tensor for the diselenoimidodiphosphinate anion is found to depend on whether the selenium is located within a pseudoboat or distorted-chair MSe 2P 2N six-membered ring. The largest reported values of (1)J((77)Se, (77)Se) iso, 405 and 435 Hz, and (1)J((125)Te, (77)Se)iso, 1120 and 1270 Hz, were obtained for the selenium and tellurium complexes, respectively; however, in contrast a correspondingly large value of (1)J((195)Pt, (77)Se)iso was not found. The chemical shift tensors for the central atoms, Se(II) and Te(II), possess positive skews, while for Pt(II) its chemical shift tensor has a negative kappa. This observed difference for the shielding of the central atoms has been explained using a qualitative molecular orbital approach.  相似文献   

4.
The two-electron oxidation of [(tmeda)NaN(PiPr2E)2] with iodine produces the cyclic [N(PiPr2E)2]+ (E = Se, Te) cations, which exhibit long E-E bonds in the iodide salts.  相似文献   

5.
Reaction of HN(PiPr2)2 with one equivalent of selenium in hexane at room temperature yields the monoselenide as the P-H tautomer Se=PiPr2-N=P(H)iPr2 (2b). Deprotonation of 2b with n butyllithium in the presence of TMEDA at -78 degrees C followed by addition of tellurium produces the air-sensitive, mixed chalcogenido complex [(TMEDA)Li(SePiPr2)(TePiPr2)N] (8Li) in >97% purity after recrystallisation. Similarly, deprotonation of Te=PiPr2-N=P(H)iPr2 (2c), followed by addition of sulfur, gives the sulfur analogue [(TMEDA)Li(SPiPr2)(TePiPr2)N] (7Li) in >99% purity. The symmetrical complexes [(TMEDA)Li(SePiPr2)2N] (4Li) and [(TMEDA)Li(TePiPr2)2N] (5Li) are produced by similar methods. Compounds 2b, 4Li, 5Li, 7Li and 8Li were characterised in solution by multinuclear (1H, 31P, 77Se and 125Te) NMR spectroscopy and their solid-state structures were determined by X-ray crystallography. The X-ray crystal structures of the polymeric chains [NaN(EPiPr2)2]infinity (4Na, E = Se and 5Na, E = Te) are also reported.  相似文献   

6.
The ambidentate dianions [(t)BuN(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu](2)(-) (5a, E = S; 5b, E = Se) are obtained as their disodium and dipotassium salts by the reaction of cis-[(t)Bu(H)N(E)P(mu-N(t)Bu)(2)P(E)N(H)(t)Bu] (6a, E = S; 6b, E = Se), with 2 equiv of MN(SiMe(3))(2) (M = Na, K) in THF at 23 degrees C. The corresponding dilithium derivative is prepared by reacting 6a with 2 equiv of (t)BuLi in THF at reflux. The X-ray structures of five complexes of the type [(THF)(x)()M](2)[(t)BuN(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu] (9, M = Li, E = S, x = 2; 11a/11b, M = Na, E = S/Se, x = 2; 12a, M = K, E = S, x = 1; 12b, M = K, E = Se, x = 1.5) have been determined. In the dilithiated derivative 9 the dianion 5a adopts a bis (N,S)-chelated bonding mode involving four-membered LiNPS rings whereas 11a,b and 12a,b display a preference for the formation of six-membered MNPNPN and MEPNPE rings, i.e., (N,N' and E,E')-chelation. The bis-solvated disodium complexes 11a,b and the dilithium complex 9 are monomeric, but the dipotassium complexes 12a,b form dimers with a central K(2)E(2) ring and associate further through weak K.E contacts to give an infinite polymeric network of 20-membered K(6)E(6)P(4)N(4) rings. The monoanions [(t)Bu(H)N(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu)](-) (E = S, Se) were obtained as their lithium derivatives 8a and 8b by the reaction of 1 equiv of (n)BuLi with 6a and 6b, respectively. An X-ray structure of the TMEDA-solvated complex 8a and the (31)P NMR spectrum of 8b indicate a N,E coordination mode. The reaction of 6b with excess (t)BuLi in THF at reflux results in partial deselenation to give the monolithiated P(III)/P(V) complex [(THF)(2)Li[(t)BuN(Se)P(mu-N(t)Bu)(2)PN(H)(t)Bu]] 10, which adopts a (N,Se) bonding mode.  相似文献   

7.
The geometric and electronic structures of the title complexes have been studied using scalar relativistic, gradient-corrected density functional theory. Extension of our previous work on six-coordinate M[N(EPH 2) 2] 3 (M = La, Ce, U, Pu; E = O, S, Se, Te), models for the experimentally characterized M[N(EP (i)Pr 2) 2] 3, yields converged geometries for all of the other 4f and 5f metals studied and for all four group 16 elements. By contrast, converged geometries for nine-coordinate M[N(EPPh 2) 2] 3 are obtained only for E = S and Se. Comparison of the electronic structures of six- and nine-coordinate M[N(EPH 2) 2] 3 suggests that coordination of the N atoms produces only minor changes in the metal-chalcogen interactions. Six-coordinate Eu[N(EPH 2) 2] 3 and Am[N(EPH 2) 2] 3 with the heavier group 16 donors display geometric and electronic properties rather different from those of the other members of the 4f and 5f series, in particular, longer than expected Eu-E and Am-E bond lengths, smaller reductions in charge difference between M and E down group 16, and larger f populations. The latter are interpreted not as evidence of f-based metal-ligand covalency but rather as being indicative of ionic metal centers closer to M (II) than M (III). The Cm complexes are found to be very ionic, with very metal-localized f orbitals and Cm (III) centers. The implications of the results for the separation of the minor actinides from nuclear wastes are discussed, as is the validity of using La (III)/U (III) comparisons as models for minor actinide/Eu systems.  相似文献   

8.
Sekar P  Ibers JA 《Inorganic chemistry》2003,42(20):6294-6299
The compound HN(SP(i)Pr(2))(SePPh(2)) has been synthesized from the reaction of Ph(2)P(Se)NH(2) with (i)()Pr(2)P(S)Cl in the presence of NaH in THF. HN(SP(i)Pr(2))(SePPh(2)) crystallizes with eight formula units in space group Pbca of the orthorhombic system in a cell of dimensions at -120 degrees C of a = 9.9560(6) A, b = 17.9053(10) A, c = 22.4156(13) A, and V = 3995.9(4) A(3). The square-planar Te(II) complex [Te[N(SP(i)Pr(2))(SePPh(2))](2)] has been isolated from the reaction of Te(tu)(4)Cl(2) x 2H(2)O (tu = thiourea) with the anion [N(SP(i)Pr(2))(SePPh(2))](-), generated in situ from HN(SP(i)Pr(2))(SePPh(2)) in the presence of KO(t)Bu. [Te[N(SP(i)Pr(2))(SePPh(2))](2)] is dimorphic, crystallizing with one formula unit in space group P1 of the triclinic system in a cell of dimensions at -120 degrees C of a = 9.8476(9) A, b = 10.3296(9) A, c = 11.3429(10) A, alpha = 101.903(1) degrees, beta = 115.471(1) degrees, gamma = 92.281(2) degrees, and V = 1008.4(2) A(3) and also crystallizing with two formula units in space group P2(1)/n of the monoclinic system in a cell of dimensions at -120 degrees C of a = 8.7931(5) A, b = 17.1830(10) A, c = 14,1026(9) A, beta = 104.696(1) degrees, and V = 2061.1(2) A(3). In each instance, the [Te[N(SP(i)Pr(2))(SePPh(2))](2)] molecule possesses a center of symmetry, comprising a Te center liganded in a trans manner by two bidentate N(SP(i)Pr(2))(SePPh(2)) groups. However, the (31)P, (77)Se, and (125)Te NMR spectra of [Te[N(SP(i)Pr(2))(SePPh(2))](2)] show two sets of resonances at 25 degrees C. The (31)P VT NMR spectra show two sets of resonances between -50 and +50 degrees C that coalesce between 80 and 100 degrees C, consistent with the presence of the cis as well as the trans isomer in solution.  相似文献   

9.
The syntheses and molecular structures of [M{N(SeP(i)Pr2)2-Se,Se'}2][M = Sn(2), Se(3)] are described, these complexes consist of discrete, monomeric molecules featuring MSe4 cores that comprise true square-planar geometries.  相似文献   

10.
Konu J  Chivers T  Tuononen HM 《Inorganic chemistry》2006,45(26):10678-10687
Two-electron oxidation of the [N(PiPr2E)2]- anion with iodine produces the cyclic [N(PiPr2E)2]+ (E =Se, Te) cations, which exhibit long E-E bonds in the iodide salts [N(PiPr2Se)2]I (4) and [N(PiPr2Te)2]I (5). The iodide salts 4 and 5 are converted to the ion-separated salts [N(PiPr2Se)2]SbF6 (6) and [N(PiPr2Te)2]SbF6 (7) upon treatment with AgSbF6. Compounds 4-7 were characterized in solution by multinuclear NMR, vibrational, and UV-visible spectroscopy supported by DFT calculations. A structural comparison of salts 4-7 and [N(PiPr2Te)2]Cl (8) confirms that the long E-E bonds in 4, 5, and 8 can be attributed primarily to the donation of electron density from a lone pair of the halide counterion into the E-E sigma* orbital (LUMO) of the cation. The phenyl derivative [N(PPh2Te)2]I (9) was prepared in a similar manner. However, the attempted synthesis of the selenium analogue, [N(PPh2Se)2]I, produced a 1:1 mixture of [N(PPh2Se)2(mu-Se)][I] (10) and [SeP(Ph2)N(Ph2)PI] (11). DFT calculations of the formation energies of 10 and 11 support the observed decomposition. Compound 10 is a centrosymmetric dimer in which two six-membered NP2Se3 rings are bridged by two I- anions. Compound 11 produces the nine-atom chain {[N(PPh2)2Se]2(mu-O)} (12) upon hydrolysis during crystallization. The reaction between [(TMEDA)NaN(PiPr2Se)2] and SeCl2 in a 1:1 molar ratio yields the related acyclic species [SeP(iPr2)N(iPr2)PCl] (13), which was characterized by multinuclear NMR spectroscopy and an X-ray structural determination.  相似文献   

11.
The reaction of the arylated Fischer carbene complexes [(CO)5M=C(OEt)Ar] (Ar=Ph; M = Cr, W; 2-MeC6H4; 2-MeOC6H; M = W) with the phosphaalkenes RP=C(NMe2), (R=tBu, SiMe3) afforded the novel phosphaalkene complexes [[RP=C(OEt)Ar]M(CO)5] in addition to the compounds [(RP=C(NMe2)2]M(CO)5]. Only in the case of the R = SiMe3 (E/Z) mixtures of the metathesis products were obtained. The bis(dimethylamino)methylene unit of the phosphaalkene precursor was incorporated in olefins of the type (Me2N)2C=C(OEt)(Ar). Treatment of [(CO)5W=C(OEt)(2-MeOC6H4)] with HP=C(NMe2)2 gave rise to the formation of an E/Z mixture of [[(Me2N)2CH-P=C(OEt)(2-MeOC6H4)]W(CO)5] the organophosphorus ligand of which formally results from a combination of the carbene ligand and the phosphanediyl [P-CH(NMe2)2]. The reactions reported here strongly depend on an inverse distribution of alpha-electron density in the phosphaalkene precursors (Pdelta Cdelta+), which renders these molecules powerfu] nucleophiles.  相似文献   

12.
13.
The compounds M(2)(O(2)CMe)(4) and the lithium amidinates Li[(N(i)Pr)(2)CR] react to give the new compounds trans-M(2)(O(2)CMe)(2)[(N(i)Pr)(2)CR](2) where M = Mo or W and R = Me (M = Mo only), -C[triple bond]C(t)Bu, -C[triple bond]CPh and -C[triple bond]C-Fc where Fc = 1-ferrocenyl. The limitations of this type of reaction are described based on steric considerations together with the preparation and characterization of the compound Mo(2)(micro-O(2)C-9-anthracene)(2)[eta(2)-(N(i)Pr)(2)CMe](2). The electronic structures of the bis-amidinate-bis-carboxylate M(2) complexes are described based on model compounds employing density functional theory and are correlated with the experimental observations of their physicochemical properties and in particular their observed electronic absorption spectra which show intense MLCT absorption bands. Preliminary studies of the reactions of these bis-amidinate-bis-carboxylate complexes in the preparation of 1-D oligomers are also described along with the preparation and molecular structures of the compounds [Li(N(i)Pr)(2)CR.THF](2) where R = 2-thienyl or -C[triple bond]C-Ph. The kinetic lability of these new M(2)-containing compounds toward ligand exchange is also noted.  相似文献   

14.
The dilithium salts of the phosphonate dianions [PhP(E)(N(t)Bu)(2)](2-) (E = O, S, Se) are generated by the lithiation of [PhP(E)(NH(t)Bu)(2)] with n-butyllithium. The formation of the corresponding telluride (E = Te) is achieved by oxidation of [Li(2)[PhP(N(t)Bu)(2)]] with tellurium. X-ray structural determinations revealed dimeric structures [Li(THF)(2)[PhP(E)(N(t)Bu)(2)]](2) in which the monomeric units are linked by Li-E bonds. In the case of E = Se or Te, but not for E = S, transannular Li-E interactions are also observed, resulting in a six-rung ladder. By contrast, for E = O, this synthetic approach yields the Li(2)O-templated tetramer [(THF)Li(2)[PhP(O)(N(t)Bu)(2)]](4).Li(2)O in THF or the tetramer [(Et(2)O)(0.5)Li(2)[PhP(O)(N(t)Bu)(2)]](4) in diethyl ether. The reaction of trimethylaluminum with PhP(E)(NH(t)Bu)(2) produces the complexes Me(2)Al[PhP(E)(N(t)Bu)(NH(t)Bu)] (E = S, Se), which were shown by X-ray crystallography to be N,E-chelated monomers.  相似文献   

15.
Zhou M  Song Y  Gong T  Tong H  Guo J  Weng L  Liu D 《Inorganic chemistry》2008,47(15):6692-6700
Addition reaction of ArN(SiMe 3)M (Ar = Ph or 2,6 - (i) Pr 2-C 6H 3 (Dipp); M = Li or Na) to 2 equivalents of alpha-hydrogen-free nitrile RCN (R = dimethylamido) gave the dimeric [M{N(Ar)C(NMe 2)NC(NMe 2)N(SiMe 3)}] 2 ( 1a, Ar = Ph, M = Li; 1b, Ar = Ph, M = Na; 1c, Ar = Dipp, M = Li). 1d was obtained by hydrolysis of 1c at ambient temperature. Treatment of a double ratio of 1a or 1b with anhydrous MCl 2 (M = Mn, Fe, Co) yielded the 1,3,5-triazapentadienato complexes [M{N(Ph)C(NMe 2)NC(NMe 2)N(SiMe 3)} 2] (M = Mn, 2; Fe, 3; Co, 4) and with NiCl 2.6H 2O gave [M{N(Ph)C(NMe 2)NC(NMe 2)N(H)} 2] (M = Ni, 5). Treatment of an equiv of 1c with anhydrous CuCl in situ and in air led to complexes [{N(Dipp)C(NMe 2)NC(NMe 2)N(SiMe 3)}CuPPh 3] 6 and [Cu{N(Dipp)C(NMe 2)NC(NMe 2)N(H)} 2] 7, respectively. 1c, 1d, and 2- 7 were characterized by X-ray crystallography and microanalysis. 1c, 1d, 5, and 6 were well characterized by (1)H, (13)C NMR, 1c by (7)Li, and 6 by (31)P NMR as well. The structural features of these complexes were described in detail.  相似文献   

16.
The reactivity of an anionic gallium(I) heterocycle, [K(tmeda)][:Ga([N(Ar)C(H)]2)], Ar = C6H3Pr(i)2-2,6, towards sources of elemental chalcogens and diorgano-dichalcogenides has been investigated and comparisons drawn with the reactivity of the valence isoelectronic N-heterocyclic carbene class of ligand. The reactions of the heterocycle with N2O or (Te)PEt3 yielded the dimeric, dianionic gallium(III) complexes, [K(L)]2[(mu-E)Ga([N(Ar)C(H)]2)]2, E = O, L = tmeda; E = Te, L = THF. Treatment of [K(tmeda)][:Ga([N(Ar)C(H)]2)] with the diphenyl dichalcogenides, PhEEPh, E = Se or Te, gave the one dimensional polymer, [K[(PhSe)2Ga([N(Ar)C(H)]2)]]infinity and the monomeric complex, [K(OEt2)3][(PhTe)2Ga([N(Ar)C(H)]2)], respectively. The X-ray crystal structures of the four complexes are reported.  相似文献   

17.
Several tellurometalates of the general formula [MTe(7)](n)()(-) (n = 2, 3) have been isolated as salts of organic cations by reaction of suitable metal sources with polytelluride solutions in DMF. The [HgTe(7)](2)(-) anion has the same structure in both the NEt(4)(+) and the PPh(4)(+) salts except for a minor change in the ligand conformation. The [AgTe(7)](3)(-) and [HgTe(7)](2)(-) anions contain metal atoms coordinated in trigonal-planar fashion to eta(3)-Te(7)(4)(-) ligands. The central Te atom of an eta(3)-Te(7)(4)(-) ligand is coordinated to the metal atom and to two Te atoms in a "T"-shaped geometry consistent with a hypervalent 10 e(-) center. The planar [AuTe(7)](3)(-) anion may best be described as possessing a square-planar Au(III) atom coordinated to an eta(3)-Te(5)(4)(-) ligand and to an eta(1)-Te(2)(2)(-) ligand. The reaction of [NEt(4)](n)()[MTe(7)] (M = Hg, n = 2; M = Au, n = 3) with the activated acetylene dimethyl acetylenedicarboxylate (DMAD) has yielded the products [NEt(4)](n)()[M(Te(2)C(2)(COOCH(3))(2))(2)] (M = Hg, n = 2; M = Au, n = 1). The metal atoms are coordinated to two Te(COOCH(3))C=C(COOCH(3))Te(2)(-) ligands, for M = Hg in a distorted tetrahedral fashion and for M = Au in a square-planar fashion.  相似文献   

18.
The reactions of the paramagnetic gallium(II) complex [{(Bu(t)-DAB)GaI}2] (Bu(t)-DAB = {(Bu(t))NC(H)}2) with the alkali metal pnictides [ME(SiMe3)2] (M = Li or Na; E = N, P, or As) have been carried out under a range of stoichiometries. The 1:2 reactions have led to a series of paramagnetic gallium(III)-pnictide complexes, [(Bu(t)-DAB)Ga{E(SiMe3)2}I] (E = N, P, or As), while two of the 1:4 reactions afforded [(Bu(t)-DAB)Ga{E(SiMe3)2}2] (E = P or As). In contrast, treatment of [{(Bu(t)-DAB)GaI}2] with 4 equiv of [NaN(SiMe3)2] resulted in a novel gallium heterocycle coupling reaction and the formation of the diradical species [(Bu(t)-DAB)Ga{N(SiMe3)2}{[CC(H)N2(Bu(t))2]Ga[N(SiMe3)2]CH3}]. The mechanism of this unusual reaction has been explored, and evidence suggests it involves an intramolecular transmethylation reaction. The X-ray crystal structures of all prepared complexes are reported, and all have been characterized by EPR and ENDOR spectroscopies. The observed spin Hamiltonian parameters provide a detailed picture of the distribution of the unpaired spin density over the molecular frameworks of the complexes.  相似文献   

19.
The synthesis and structure of a Zn-Zn-bonded compound supported by a doubly reduced alpha-diimine ligand, [Na(THF)2]2 x [LZn-ZnL] (L = [(2,6-(i)Pr2C6H3)N(Me)C]2(2-)) are reported, with a Zn-Zn bond length of 2.399(1) angstroms.  相似文献   

20.
Gu ZG  Yang QF  Liu W  Song Y  Li YZ  Zuo JL  You XZ 《Inorganic chemistry》2006,45(22):8895-8901
The reactions of [M(II)(Tpm(Me))(H2O)3]2+ (M = Ni, Co, Fe; Tpm(Me) = tris(3,5-dimethyl-1-pyrazoyl)methane) with [Bu4N][(Tp)Fe(III)(CN)3] (Bu4N+ = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate) in MeCN-Et2O afford three pentanuclear cyano-bridged clusters, [(Tp)3(Tpm(Me))2Fe(III)3M(II)2(CN)9]ClO4.15H2O (M = Ni, 1; M = Co, 2) and [(Tp)3(Tpm(Me))2Fe(III)3Fe(II)2(CN)9]BF4.15H2O (3). Single-crystal X-ray analyses reveal that they show the same trigonal bipyramidal structure featuring a D3h-symmetry core, in which two opposing Tpm(Me)-ligated M(II) ions situated in the two apical positions are linked through cyanide bridges to an equatorial triangle of three Tp-ligated Fe(III) (S = 1/2) centers. Magnetic studies for complex 1 show ferromagnetic coupling giving an S = 7/2 ground state and an appreciable magnetic anisotropy with a negative D(7/2) value equal to -0.79 cm(-1). Complex 2 shows zero-field splitting parameters deducted from the magnetization data with D = -1.33 cm(-1) and g = 2.81. Antiferromagnetic interaction was observed in complex 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号