首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Several characteristics of fission accompanied by long range alpha particles (LRA) have been studied in the thermal neutron induced fission of235U. The kinetic energies of fission fragments and the LRA were measured with a back-to-back ionization chamber and semiconductor detectors respectively. The kinetic energies of the two fragments and the LRA in LRA fission, along with the energies of pair fragments in the normal binary fissions, were recorded event by event on a magnetic tape by means of a four-parameter data acquisition system. The data were analysed to study the dependence of different quantities in LRA fission on the fragment mass ratio, LRA energy and the total kinetic energy of the fission fragments. It is seen that the most probable energy of LRA increases significantly for near symmetric mass divisions. The total kinetic energy for all mass ratios in LRA fission is found to be (2.6±0.7) MeV larger than that in binary fission. The difference in the total kinetic energies in LRA and binary fissions is seen to be dependent on mass ratio. This result may suggest that the scission configuration in LRA fission is different for different mass ratios. Correlations between the fission fragment and LRA energies have been studied for several mass ratios. It is seen that the most probable fragment kinetic energyĒ k varies nearly linearly with the LRA energyE a for various mass divisions but the variation of the most probable LRA energyĒ a with fragment kinetic energyE k is found to deviate from linearity for several mass ratios. From a least square fit to the variation ofĒ k withE a it is found that the slope ( k/dEa) increases with the increase in mass ratio. The present results are discussed to arrive at a better understanding of the scission configuration in the fission accompanied by LRA emission.  相似文献   

2.
S C L Sharma  G K Mehta 《Pramana》1982,18(2):205-210
The yield and energy distribution of long-range alpha-particles (lra) emitted from neutron-induced fission of235U have been measured at neutron energies; thermal, 125±12, 155±11, 185±10, 210±9, 240±9, 365±50 and 480±45 keV. The long-range alpha-particles were detected in cellulose nitrate track detector foils. Results showed an increase of about 50% in the yield at neutron energies in the region 150 keV≤E n≤220 keV as compared to that of thermal neutrons. A calculation has been carried out to extract thelra to binary fission ratio forp-wave neutron induced fission.  相似文献   

3.
V S Ramamurthy  S S Kapoor 《Pramana》1978,10(3):319-327
A method is proposed to deduce the shell correction energy corresponding to the fission transition state shape of nuclei in the mass region around 200, from an analysis of the first chance fission values of the ratio of fission to neutron widths, (Γ f n )1. The method is applied to the typical case of the fissioning nucleus212Po, formed by alpha bombardment of208Pb. For the calculation of the neutron width, the level densities of the daughter nucleus after neutron emission were obtained from a numerical calculation starting from shell model single particle energy level scheme. It is shown that with the use of standard Fermi gas expression for the level densities of the fission transition state nucleus in the calculation of the fission width, an apparent energy dependence of the fission barrier height is required to fit the experimental data. This energy dependence, which arises from the excitation energy dependence of shell effects on level densities, can be used to deduce the shell correction energy at the fission transition state point. It is found that in the case of212Po, the energy of the actual transition state point is higher than the energy of the liquid drop model (LDM) saddle point by (3 ± 1) MeV, implying significant positive shell correction energy at the fission transition state. Further, the liquid drop model value of level density parametera is found to be a few per cent smaller for the saddle point shape as compared to its spherical shape.  相似文献   

4.
For the n+<'235>U fission reaction, the total excitation energy partition of the fission fragments, the average neutron kinetic energy <ε>(A) and the total average energies E<,γ>(A) removed by γ rays as a function of fission fragment mass are given at incident energies up to 20 MeV. The prompt neutron multiplicity as a function of the fragment mass, ν(A), for neutron-induced fission of <'235>U at different incident neutron energies is calculated. The calculated results are checked with the total average prompt neutron multiplicities ν and compared with the experimental and evaluated data. Some prompt neutron and γ emission mechanisms are discussed.  相似文献   

5.
The improved version of Los Alamos model with the multi-modal fission approach is used to analyse the prompt fission neutron spectrum and multiplicity for the neutron-induced fission of 237Np. The spectra of neutrons emitted from fragments for the three most dominant fission modes (standard Ⅰ, standard Ⅱ and superlong) are calculated separately and the total spectrum is synthesized. The multi-modal parameters contained in the spectrum model are determined on the basis of experimental data of fission fragment mass distributions. The calculated total prompt fission neutron spectrum and multiplicity are better agreement with the experimental data than those obtained from the conventional treatment of the Los Alamos model.  相似文献   

6.
The data of fission fragment anisotropies measured for the system16O +209Bi in the centre of mass energy region of 73 to 95 MeV have been compared with the saddle point statistical model calculations. The corrections to the nuclear temperature and the spin distribution arising due to pre-fission neutron emission have been made. While the resultant calculations reproduce very well the data in the near- and sub-barrier energy regions, they deviate from the data at higher energies. This observation is similar to what was already reported for16O +208Pb system.  相似文献   

7.
R K Jain  S K Bose  J Rama Rao 《Pramana》1995,45(6):519-531
Using Lexan polycarbonate plastic as the fission fragment track detectors, the fragment angular distributions have been measured in the cases of fission of232Th and238U induced by alpha particles of various energies ranging from 40 to 70MeV obtained from the 88″ variable energy cyclotron at Calcutta. The center-of-mass angular distributions have been calculated and fitted by a series of Legendre polynomials. TheW(10°)/W(90°) ratios (defined as anisotropy) were measured at several energies for both the targets. These data are utilized in calculation of the energy dependence ofK 0 2 , the standard deviation of the distribution in the angular momentum projection on the nuclear symmetry axis at the saddle point. Values of Γ f η , i.e. the ratio of the fission width to neutron emission width have been determined for232Th and238U nuclei. The integral cross-section for alpha induced fission in each target was determined by numerical integration of the respective center-of-mass angular differential cross-sections. The results were compared with similar data available in the literature which served to resolve some of the discrepancies observed in earlier measurements. The results were also compared with theoretical cross-sections.  相似文献   

8.
The gridded ion chamber developed at CBNM provides a powerful tool for measurements of fission fragment angular, kinetic energy and mass distributions with an angular efficiency close to 4π. In the present experiment it is used together with a neutron time-of-flight detector to measure the correlation between neutron emission, fragment angle, mass and energy in the spontaneous fission of 252Cf.  相似文献   

9.
The emission probabilities per fission of α-particles, tritons and protons have been measured in fast neutron induced fission of 235U. The measurements were carried out at neutron energies of 120, 180, 230 and 550 keV. AΔE-E semiconductor detector telescope was used to identify different light charged particles and the fission fragments were detected with an ionization chamber. The three-parameter data corresponding to the pulse heights from the ΔE-E detectors and the ion-chamber were recorded event by event on magnetic tape and were analyzed off-line by computer. No significant variation in the most probable energy (E) and the standard deviation (σE) of the energy spectra of different light charged particles with incident neutron energy was observed, although Eα was seen to have a slightly higher value beyond En = 230 keV. The yield of α-particles in fission induced by neutrons of En ~ 200 keV was found to be higher by about 20 % than that in thermal neutron induced fission. The yields of tritons and protons were found to increase significantly with neutron energy.  相似文献   

10.
The correlations between the various parameters in the thermal neutron induced fission of 235U accompanied by long-range α-particles (LRA) have been measured employing a back-to-back gridded ionization chamber. Semiconductor detectors were placed symmetrically along the electric field direction of the chamber behind the thin windows of the collector plates for the measurement of the LRA energies. A distinguishing feature of the present method is that the angle between the fission fragments and the electric field direction (hence the direction of α-particle emission) is also determined electronically by the analysis of the coincident collector and grid pulses of the ionization chamber. About 5 × 105 LRA-accompanied fission events and about 2 × 106 binary fission events were recorded and analyzed to obtain a number of correlations of interest between the fragment mass, total kinetic energy, LRA energy and fragment-LRA angle. These experimental results are presented and discussed with regard to the emission mechanism of the LRA.  相似文献   

11.
The yields and energy spectra of light charged particles emitted in the fission of235U have been measured in the neutron energy range of 100 keV to 1 MeV. The yield of long range alpha particles is found to increase around 200 keV neutron energy compared to thermal fission. A low energy component observed in the energy spectrum was assigned to the tritons emitted in fission. The yield of this triton component is seen to have a marked increase around 500 keV. These results indicate that LCP yield is influenced by the transition state level characteristics.  相似文献   

12.
The energy distributions and relative intensities of protons, deutrons, tritons and α-particles emitted along the fission axis during thermal neutron fission of 235U were measured simultaneously with both fission fragment energies. The mass distributions of fragments, the total kinetic energy (TKE), the dependence of the mean TKE on the fragment mass, as well as the mean kinetic energy dependence of polar particles on the fragment mass and energy were subsequently deduced from these data. Although some experimental results agree remarkably well with the hypothesis that polar particles are evaporated in flight from fission fragments, the general conclusion is that these particles are emitted according to some other mechanism.  相似文献   

13.
Binary coincident fragments from the 63Cu + 197Au reaction at a copper energy of 605 MeV have been studied. Fragment energies were measured and fragment masses determined by a kinematic method. Three types of event are defined by suitable adjacent limits in the mass versus total kinetic energy event space. The angular distributions of cross section, average total kinetic energy and average mass have been determined for each event region. Total cross sections determined in the present experiment are compared to those found at lower bombarding energies. Further information on the sequential fission process has been obtained from measurements of yields of radioactive isotopes resulting from bombardment ofthin and thick targets of Au by 605 MeV Cu ions.  相似文献   

14.
The measurements of fission fragment angular distributions for the system19F+232Th have been extended to the sub-barrier energies of 89.3, 91.5 and 93.6 MeV. The measured anisotropies, within errors are nearly the same over this energy region. However, the deviation of the experimental values of anisotropies from that of standard statistical model predictions increases as the bombarding energy is lowered.  相似文献   

15.
The average neutron kinetic energies and the residual total gamma ray energies as a function of fragment mass are calculated for the spontaneous fission of 252Cf on the basis of the Nilsson model and of the B.C.S. Hamiltonian.  相似文献   

16.
The emission of prompt fission neutrons in spontaneous fission of 252Cf was studied by the application of digital data processing for the first time. The study was aimed at comparing the obtained results with those from the pioneering work of Budtz-Jorgensen and Knitter. By using a twin Frisch grid ionization chamber for fission fragment detection and a neutron scintillator (NE213) for the detection of neutrons, a total of about 107 neutron coincidences were registered. The fission-fragment kinetic energies were measured using a fast (80 MHz) waveform digitizer that provided 10-bit amplitude resolution. Standard analog NIM modules were used for neutron time-of-flight and pulse shape measurements. A time-to-digital converter (TDC) with 1-ns resolution and a pair of gated charge-to-digital converters with 12-bit amplitude resolution were also used. The fission fragment signals were analyzed by means of digital signal processing algorithms. Data on prompt fission neutron energies were obtained by using a time-of-flight (TOF) spectrum unfolding procedure applicable to list-mode data.  相似文献   

17.
Fission fragment mass and kinetic energy distributions and their correlations have been studied for the thermal neutron induced fission of 237Np. The global mass distribution is rather smooth, apart from a weak shoulder at μH = 140–141. When low excitation events are selected, fine structures associated with the charge of the fragments are observed. Furthermore, there is a sudden increase in Ek for μH > 155, which is probably due to a spherical shell N = 50 in the light fragment and the corresponding deformed (but stable) heavy fragments with masses in the rare earth region. For the average (pre-neutron emission) total fragment kinetic energy, a value of 176.4 ± 0.6 MeV has been obtained, in agreement with the systematics.Also the prompt neutron emission curve v(m1) has been calculated, which shows the well-known saw-tooth shape. Finally, the energy distribution and the emission probability of the ternary α-particles have been determined.  相似文献   

18.
Two separate three-dimensional experiments have been performed in which the energies of coincident fragment pairs and γ-rays or internal conversion electrons, emitted within ≈ 1.6 nsec of the thermal-neutron-induced fission of 235U, were recorded event by event. The fragment kinetic energies were used for mass identification. The self-consistency of the values of electron energy, γ-ray energy and fragment charge, and its agreement with X-ray selection data, were used to identify the atomic numbers of the fragments. The analysis of the γ-ray and conversion electron spectra resulted in the assignment of many transitions to new isotopes as well as improvement in or confirmation of many assignments from the 252Cf spontaneous fission data. Limited information on the multipolarities of the transitions in even nuclei is presented. The relative yield of electrons per fragment indicates softness to deformation in the mass region 100–110. Data are presented supporting the assignment of a 193 keV transition as the 2+ → 0+ transition in 98Sr. An examination of the 2+ → 0+ level systematics of neighbouring even nuclei suggests a transition from vibrational to rotational behaviour in the light fragments between neutron numbers 58 and 60.  相似文献   

19.
The mean primary nuclear charges of fragments from thermal neutron fission of U235 as a function of initial mass in the range 88–105 have been determined from theK-ray energy spectra of the light fragments.K- rays were registered with an argon-methane filled proportional counter in coincidence with the pulses from a pair of semiconductor detectors for complementary fission fragments. The deviation of the mean primary charge of the fragments from the “unchanged charge density” value as compared to the density of the parent nucleus U236 was found to be 0.54±0.14 charge units independent of mass in the range 88–105. No closed shell effect on the mean primary charge was found. Within about 10?9 sec after fission aK-X ray yield of 0.057±0.012 per fission in the light fragment group was measured. The yields are nearly independant of mass in the range 88–95 corresponding to a value of 0.04 per fragment and increase up to 0.09 in the mass range 95–104, the relative accuracy being 3 to 4%.  相似文献   

20.
The cross-sections for formation of isomeric pair, 75Gem(σm) and 75Geg(σg), through 76Ge(n, 2n), 75As(n, p) and 78Se(n, α) reactions were measured at 13.73 MeV, 14.42 MeV and 14.77 MeV neutrons and also estimated using EMPIRE-II and TALYS codes over neutron energies from near threshold to 20 MeV. For each (n, 2n), (n, p) and (n, α) reaction, the cross-section initially increases with neutron energy, but starts decreasing as the neutron energy exceeds the respective threshold of (n, 3n), (n, pn) and (n, αn) reactions. The higher values of σm relative to σg reveal that the transitions of the excited 75Ge from higher energy levels to metastable state (7+/2) are favored as compared to unstable ground state (1/2). The present values of cross sections for formation of 75Gem,g through (n, 2n) and (n, α) reactions are lower, and that of (n, p) reaction are higher compared to most of the corresponding literature cross-sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号