首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semigroups of positivity preserving linear operators on measures of a measurable space X describe the evolutions of probability distributions of Markov processes on X. Their dual semigroups of positivity preserving linear operators on the space of measurable bounded functions B(X) on X describe the evolutions of averages over the trajectories of these Markov processes. In this paper we introduce and study the general class of semigroups of non-linear positivity preserving transformations on measures that is non-linear Markov or Feller semigroups. An explicit structure of generators of such groups is given in case when X is the Euclidean space R d (or more generally, a manifold) showing how these semigroups arise from the general kinetic equations of statistical mechanics and evolutionary biology that describe the dynamic law of large numbers for Markov models of interacting particles. Well posedness results for these equations are given together with applications to interacting particles: dynamic law of large numbers and central limit theorem, the latter being new already for the standard coagulation-fragmentation models.  相似文献   

2.
The discrete coagulation-fragmentation equation describes the kinetics of cluster growth in which clusters can coagulate via binary interactions to form larger clusters or fragment to form smaller ones. These models have many applications in pure and applied science ranging from cluster formation in galaxies to the kinetics of phase transformations in binary alloys. Our results relate to existence, uniqueness, density conservation and continuous dependence and they generalise the corresponding results in [ref. 2] for the Becker-Doring equations for which the processes are restricted to clusters gaining or shedding one particle. Examples are given which illustrate the role of the assumptions on the kinetic coefficients and show the rich set of analytic phenomena supported by the general discrete coagulation-fragmentation equations.  相似文献   

3.
We explicitly compute limit shapes for several grand canonical Gibbs ensembles of partitions of integers. These ensembles appear in models of aggregation and are also related to invariant measures of zero range and coagulation-fragmentation processes. We show, that all possible limit shapes for these ensembles fall into several distinct classes determined by the asymptotics of the internal energies of aggregates.  相似文献   

4.
We study mass-transport models with multiple-chipping processes. The rates of these processes are dependent on the chip size and mass of the fragmenting site. In this context, we consider k-chip moves (where k = 1, 2, 3, ...); and combinations of 1-chip, 2-chip and 3-chip moves. The corresponding mean-field (MF) equations are solved to obtain the steady-state probability distributions, P(m) vs. m. We also undertake Monte Carlo (MC) simulations of these models. The MC results are in excellent agreement with the corresponding MF results, demonstrating that MF theory is exact for these models.  相似文献   

5.
Classical spin systems with nonadditive long-range interactions are studied in the microcanonical ensemble. It is expected that the entropy of such a system is identical to that of the corresponding mean-field model, which is called “exactness of the mean-field theory”. It is found out that this expectation is not necessarily true if the microcanonical ensemble is not equivalent to the canonical ensemble in the mean-field model. Moreover, necessary and sufficient conditions for exactness of the mean-field theory are obtained. These conditions are investigated for two concrete models, the α-Potts model with annealed vacancies and the α-Potts model with invisible states.  相似文献   

6.
Two cellular automata models with directed mass flow and internal time scales are studied by numerical simulations. Relaxation rules are a combination of probabilistic critical height (probability of toppling p) and deterministic critical slope processes with internal correlation time tc equal to the avalanche lifetime, in model A, and ,in model B. In both cases nonuniversal scaling properties of avalanche distributions are found for , where is related to directed percolation threshold in d=3. Distributions of avalanche durations for are studied in detail, exhibiting multifractal scaling behavior in model A, and finite size scaling behavior in model B, and scaling exponents are determined as a function of p. At a phase transition to noncritical steady state occurs. Due to difference in the relaxation mechanisms, avalanche statistics at approaches the parity conserving universality class in model A, and the mean-field universality class in model B. We also estimate roughness exponent at the transition. Received: 29 May 1998 / Revised: 8 September 1998 / Accepted: 10 September 1998  相似文献   

7.
A general theoretical framework for the construction of maximally complex, yet analytically tractable mean-field theories for quantum-mechanical models is presented. These mean-field theories fulfil several strict conditions which are derived from analogous theories in classical statistical mechanics. In particular, they are thermodynamically consistent, conserving approximations and provide exact bounds on the free energy of the original model. The formalism is used to construct a mean-field theory for the Hubbard model in thestrong-coupling limit.  相似文献   

8.
Stochastic dynamics in the presence of quenched disorder (e.g., diffusion in a random medium) is generally treated in a suitable mean-field or effective medium approximation. While numerical simulations may help determine the accuracy of such approximations in specific models, there are relatively few instances in which analytic solutions are possible, to enable a precise comparison to be made with the mean-field results. We consider in this paper a simple but general model of quenched disorder in which a system variablex jumps stochastically between two valuesx a andx b . However, in each level there occurs with a certain probability a branch (or internal) state into which the system may fall, and from which a jump to the other level is possible only after a return to the original (or ‘active’) state. Four different configurations of the states of the system are thus possible, and the transitions between the states are governed by Markovian transition probabilities. The moments ofx and its autocorrelation function are computed in each case, and then configuration-averaged over the four realizations. This represents the exact solution. Next, a mean-field theory of the dynamics is developed: this turns out to involve an effective waiting-time density at each of the two levels that is non-exponential in time, so that the mean-field dynamics is a non-Markovian alternating renewal process. The moments and autocorrelation ofx are again computed, and compared with the exact solutions. The extent of the differences at both short and long times is elucidated, and a numerical comparison is presented for the case of maximal disorder.  相似文献   

9.
Heterogeneous mean-field theory is commonly used methodology to study dynamical processes on complex networks,such as epidemic spreading and phase transitions in spin models.In this paper,we propose an improved heterogeneous mean-field theory for studying the Ising model on complex networks.Our method shows a more accurate prediction in the critical temperature of the Ising model than the previous heterogeneous mean-field theory.The theoretical results are validated by extensive Monte Carlo simulations in various types of networks.  相似文献   

10.
We discuss the dynamics of two weakly coupled Bose-Einstein condensates in a double-well potential, contrasting the mean-field picture to the exact N-particle evolution. On the mean-field level, a self-trapping transition occurs when the scaled interaction strength exceeds a critical value; this transition essentially persists in small condensates comprising about 1000 atoms. When the double-well is modulated periodically in time, Floquet-type solutions to the nonlinear Schr?dinger equation take over the role of the stationary mean-field states. These nonlinear Floquet states can be classified as “unbalanced” or “balanced”, depending on whether or not they entail long-time confinement of most particles to one well. Since the emergence of unbalanced Floquet states depends on the amplitude and frequency of the modulating force, we predict that the onset of self-trapping can efficiently be controlled by varying these parameters. This prediction is verified numerically by both mean-field and N-particle calculations. Received 5 November 2000 and Received in final form 16 February 2001  相似文献   

11.
We consider various equilibrium statistical mechanics models with combined short- and long-range interactions and identify the crossover to mean-field behavior, finding anomalous scaling in the width of the mean-field region, as well as in the mean-field amplitudes. We then show that this model enables us, in many cases, to determine the universal critical properties of systems on a small-world network. Finally, we consider nonequilibrium processes.  相似文献   

12.
13.
An elementary solution to a general class of classical spin-glass models is presented. This class comprises all mean-field models where bond-randomness is given in terms ofsite-randomness with finitely many random variables per site and includes both separable and non-separable interactions. The main idea is to single out specific sublattice magnetizations which correspond to the probability distribution and to determine their asymptotics by means of a simple large-deviations argument. The ensuing stability and bifurcation analysis is given in detail.  相似文献   

14.
 We consider a variety of nearest-neighbor spin models defined on the d-dimensional hypercubic lattice ℤ d . Our essential assumption is that these models satisfy the condition of reflection positivity. We prove that whenever the associated mean-field theory predicts a discontinuous transition, the actual model also undergoes a discontinuous transition (which occurs near the mean-field transition temperature), provided the dimension is sufficiently large or the first-order transition in the mean- field model is sufficiently strong. As an application of our general theory, we show that for d sufficiently large, the 3-state Potts ferromagnet on ℤ d undergoes a first-order phase transition as the temperature varies. Similar results are established for all q-state Potts models with q≥3, the r-component cubic models with r≥4 and the O(N)-nematic liquid-crystal models with N≥3. Received: 22 July 2002 / Accepted: 12 January 2003 Published online: 5 May 2003 RID="⋆" ID="⋆" ? Copyright rests with the authors. Reproduction of the entire article for non-commercial purposes is permitted without charge. Communicated by J. Z.Imbrie  相似文献   

15.
Restricting space to low dimensions can cause deviations from the mean-field behavior in certain statistical systems. We investigate, both numerically and analytically, the behavior of the chemical reaction A+2X3X in one and two dimensions. In one dimension, we produce exact results showing that the trimolecular reaction system stabilizes in a nonequilibrium, locally frozen, asymptotic state in which the ratior of A to X particles is a constant number,r=0.38, quite different from the mean-field ratio,r MF=1. The same trimolecular model, however, reaches the mean-field limit in two dimensions. In contrast, the bimolecular chemical reaction A+X2X is shown to agree with the mean-field predictions in all dimensions. For both models, we show that the adoption of certain types of transition rules in the laws of evolution can lead to oscillatory steady states.  相似文献   

16.
We consider the time evolution of a system of N identical bosons whose interaction potential is rescaled by N −1. We choose the initial wave function to describe a condensate in which all particles are in the same one-particle state. It is well known that in the mean-field limit N → ∞ the quantum N-body dynamics is governed by the nonlinear Hartree equation. Using a nonperturbative method, we extend previous results on the mean-field limit in two directions. First, we allow a large class of singular interaction potentials as well as strong, possibly time-dependent external potentials. Second, we derive bounds on the rate of convergence of the quantum N-body dynamics to the Hartree dynamics.  相似文献   

17.
In nonlinear voter models the transitions between two states depend in a nonlinear manner on the frequencies of these states in the neighborhood. We investigate the role of these nonlinearities on the global outcome of the dynamics for a homogeneous network where each node is connected to m = 4 neighbors. The paper unfolds in two directions. We first develop a general stochastic framework for frequency dependent processes from which we derive the macroscopic dynamics for key variables, such as global frequencies and correlations. Explicit expressions for both the mean-field limit and the pair approximation are obtained. We then apply these equations to determine a phase diagram in the parameter space that distinguishes between different dynamic regimes. The pair approximation allows us to identify three regimes for nonlinear voter models: (i) complete invasion; (ii) random coexistence; and – most interestingly – (iii) correlated coexistence. These findings are contrasted with predictions from the mean-field phase diagram and are confirmed by extensive computer simulations of the microscopic dynamics.  相似文献   

18.
We undertake a numerical study of the Flory-Huggins-de Gennes functional ind=3 dimensions describing a polymer blend. By discretising the functional on a three-dimensional lattice and employing the hybrid Monte Carlo simulation algorithm, we investigate to what extent the inclusion of the term describing fluctuations in local polymer concentration alters the phase diagram of the model. We find that, despite the relatively small weight of the fluctuation term, the coexistence curve is shifted by an appreciable amount from that predicted by naive mean-field theory, which ignores such spatial fluctuations. The direction of the shift is consistent with that already observed in experiment and in simulations of microscopic models of polymer blends. A finite-size scaling analysis indicates that the critical behavior of the model seems to belong to the 3D Ising universality class rather than being mean-field in nature.It is a pleasure to dedicate this paper to Oliver Penrose on the occasion of his 65th birthday.  相似文献   

19.
The purpose of this article is to discuss cluster expansions in dense quantum systems, as well as their interconnection with exchange cycles. We show in general how the Ursell operators of order l≥ 3 contribute to an exponential which corresponds to a mean-field energy involving the second operator U2, instead of the potential itself as usual - in other words, the mean-field correction is expressed in terms of a modification of a local Boltzmann equilibrium. In a first part, we consider classical statistical mechanics and recall the relation between the reducible part of the classical cluster integrals and the mean-field; we introduce an alternative method to obtain the linear density contribution to the mean-field, which is based on the notion of tree-diagrams and provides a preview of the subsequent quantum calculations. We then proceed to study quantum particles with Boltzmann statistics (distinguishable particles) and show that each Ursell operator Un with n≥ 3 contains a “tree-reducible part”, which groups naturally with U2 through a linear chain of binary interactions; this part contributes to the associated mean-field experienced by particles in the fluid. The irreducible part, on the other hand, corresponds to the effects associated with three (or more) particles interacting all together at the same time. We then show that the same algebra holds in the case of Fermi or Bose particles, and discuss physically the role of the exchange cycles, combined with interactions. Bose condensed systems are not considered at this stage. The similarities and differences between Boltzmann and quantum statistics are illustrated by this approach, in contrast with field theoretical or Green's functions methods, which do not allow a separate study of the role of quantum statistics and dynamics. Received 18 October 2001  相似文献   

20.
The relation between thermodynamic phase transitions in classical systems and topological changes in their configuration space is discussed for two physical models and contains the first exact analytic computation of a topologic invariant (the Euler characteristic) of certain submanifolds in the configuration space of two physical models. The models are the mean-field XY model and the one-dimensional XY model with nearest-neighbor interactions. The former model undergoes a second-order phase transition at a finite critical temperature while the latter has no phase transitions. The computation of this topologic invariant is performed within the framework of Morse theory. In both models topology changes in configuration space are present as the potential energy is varied; however, in the mean-field model there is a particularly strong topology change, corresponding to a big jump in the Euler characteristic, connected with the phase transition, which is absent in the one-dimensional model with no phase transition. The comparison between the two models has two major consequences: (i) it lends new and strong support to a recently proposed topological approach to the study of phase transitions; (ii) it allows us to conjecture which particular topology changes could entail a phase transition in general. We also discuss a simplified illustrative model of the topology changes connected to phase transitions using of two-dimensional surfaces, and a possible direct connection between topological invariants and thermodynamic quantities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号