共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the Bayesian information criterion, this paper proposes the
improved local linear prediction method to predict chaotic time
series. This method uses spatial correlation and temporal
correlation simultaneously. Simulation results show that the
improved local linear prediction method can effectively make
multi-step and one-step prediction of chaotic time series and the
multi-step prediction performance and one-step prediction accuracy
of the improved local linear prediction method are superior to those
of the traditional local linear prediction method. 相似文献
2.
A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in state space. After reconstructing state space from one-dimensional chaotic time series, neighboring multiple-state vectors of the predicting point are selected to deduce the prediction formula by using the definition of the local Lyapunov exponent. Numerical simulations are carried out to test its effectiveness and verify its higher precision over two older methods. The effects of the number of referential state vectors and added noise on forecasting accuracy are also studied numerically. 相似文献
3.
4.
5.
针对多元混沌时间序列的预测问题, 考虑到单纯改进储备池算法无法明显地提高预测精度, 提出一种基于误差补偿的时间序列混合预测模型. 实际观测的数据既包含线性特征又包含非线性特征. 首先利用自回归移动平均模型预测线性特征, 使得残差数据仅含非线性特征; 然后, 建立正则化回声状态网络模型预测; 最后, 将非线性部分的预测值与线性部分的预测值相加, 以实现高精度的多元混沌时间序列预测. 基于Lorenz和太阳黑子-黄河径流量时间序列的仿真实验验证了本文所提模型的有效性.
关键词:
回声状态网络
混沌
多元时间序列预测
误差补偿 相似文献
6.
针对混沌时间序列单步和多步预测,提出基于复合协方差函数的高斯过程 (GP)模型方法.GP模型的确立由协方差函数决定,通过对训练数据集的学习,在证据最大化框架内,利用矩阵运算和优化算法自适应地确定协方差函数和均值函数中的超参数.GP模型与神经网络、模糊模型相比,其可调整参数很少.将不同复合协方差函数的GP模型应用在混沌时间序列单步及多步提前预测中,并与单一协方差函数的GP、支持向量机、最小二乘支持向量机、径向基函数神经网络等方法进行了比较.仿真结果表明,基于不同复合协方差函数的GP方法能精确地预测混沌时间序
关键词:
高斯过程
混沌时间序列
预测
模型比较 相似文献
7.
结合相空间重构理论和时间序列分析理论,提出一种用于时间序列多步预测的网络模型.网络采用多个混沌算子加权求和的形式构成.网络各层单元采用固定权值连接,混沌算子的控制参数利用混沌优化算法进行训练调节,从而控制预测网络的动力学行为.利用已知时间序列数据构造出训练样本,训练样本在网络训练过程中仅使用一次,促使网络的动力学特性随时间的推移而变化,并逐渐逼近被预测系统的动力学特性,最终完成对未来时刻数据的预测.在对理论数据进行预测分析时,通过计算预测序列的Lyapunov指数验证了预测网络的有效性.在对实际时间序列的预测过程中,该网络表现出了良好的预测性能.仿真结果表明,该预测网络可对多种时间序列在一定的预测步长范围内实现有效的预测. 相似文献
8.
研究了混沌时间序列预测问题.提出了一种由五元生长因子组调控的类皮层神经网络模型,即多簇回响状态网络模型(MCESN).研究表明该生长因子组能够有效决定模型的拓扑性质;同时具备小世界和无标度等复杂网络特征的MCESN能够获得较优的预测结果.通过Monte Carlo仿真实验表明,该模型不仅训练算法简单,而且与常规回响状态网络比较,预测结果的精度更高、标准差更小.
关键词:
混沌时间序列预测
回响状态网络
复杂网络
Ω复杂性')" href="#">Ω复杂性 相似文献
9.
A method to improve the precision of chaotic time series prediction by using a non-trajectory 下载免费PDF全文
Due to the error in the measured value of the initial state and the
sensitive dependence on initial conditions of chaotic dynamical
systems, the error of chaotic time series prediction increases with
the prediction step. This paper provides a method to improve the
prediction precision by adjusting the predicted value in the course
of iteration according to the evolution information of small
intervals on the left and right sides of the predicted value. The
adjusted predicted result is a non-trajectory which can provide
a better prediction performance than the usual result based on the
trajectory. Numerical simulations of two typical chaotic maps
demonstrate its effectiveness. When the prediction step gets
relatively larger, the effect is more pronounced. 相似文献
10.
分析了现有的基于回声状态网络(ESN)的迭代预测方法,指出了该方法在理论上存在的问题以及应用中存在的障碍.提出了一种基于储备池的直接预测方法,该方法利用预测原点和预测时域之间的关系直接构建预测器,因此可以预先对预测器的稳定性施加约束,从而避免了在迭代预测方法中由于网络回路闭合而产生的稳定性问题.在仿真中,首先以Lorenz时间序列为例分析了迭代预测方法在闭合回路前后储备池的变化情况,然后通过Mackey-Glass标杆问题的测试验证了直接预测方法的可行性. 相似文献
11.
结合局域预测法计算速度快的优点和支持向量机的泛化性能好、全局最优、稀疏解等特性,用局域支持向量机预测研究了时空混沌序列的局域预测性能,并用局域支持向量机预测模型讨论了嵌入维数、邻近个数选择以及时空混沌的耦合方式和格子间的耦合强度变化对时空混沌局域预测性能的影响.研究结果表明:局域支持向量机不仅比全局支持向量机、局域零阶预测、局域线性预测等方法具有更好的预测性能,且具有对嵌入维数和邻近个数不敏感的优点;时空混沌的耦合方式和格子间的耦合强度对时空混沌序列的预测性能有明显影响. 相似文献
12.
13.
14.
多元混沌时间序列广泛存在于自然、经济、社会、工业等领域. 对多元混沌时间序列进行建模预测有助于人类更好地管理, 控制与决策. 针对多元混沌时间序列的建模预测问题, 本文提出一种基于多核极端学习机的预测方法. 首先对多元混沌时间序列进行相空间重构, 将多元混沌时间序列序列的时间相关性转化为空间相关性. 提出一种结合多核学习算法与核极端学习机模型的多核极端学习机建立相空间中输入输出数据的非线性映射. 多核极端学习机模型结合了多核学习算法的数据融合能力以及核极端学习机的训练简便优势. 基于Lorenz混沌时间序列预测和San Francisco河流月径流量预测的仿真实验表明, 与其他常见混沌时间序列预测方法相比, 本文提出的基于多核极端学习机的多元混沌时间序列预测方法具有更小的预测误差. 相似文献
15.
16.
A new second-order neural Volterra filter (SONVF) with conjugate gradient (CG) algorithm is proposed to predict chaotic time series based on phase space delay-coordinate reconstruction of chaotic dynamics system in this paper, where the neuron activation functions are introduced to constraint Volterra series terms for improving the nonlinear approximation of second-order Volterra filter (SOVF). The SONVF with CG algorithm improves the accuracy of prediction without increasing the computation complexity. Meanwhile, the difficulty of neuron number determination does not exist here. Experimental results show that the proposed filter can predict chaotic time series effectively, and one-step and multi-step prediction performances are obviously superior to those of SOVF, which demonstrate that the proposed SONVF is feasible and effective. 相似文献
17.
针对多变量混沌时间序列预测问题, 提出了一种基于输入变量选择和极端学习机的预测模型. 其基本思想是 对多变量混沌时间序列进行相空间重构后, 采用互信息方法选择与预测输出统计相关最高的重构输入变量, 借助极端学习机的通用逼近能力建立多变量混沌时间序列的预测模型. 为进一步提高预测精度, 采用模型选择算法选择具有最小期望风险的极端学习机预测模型. 基于Lorenz, Rössler多变量混沌时间序列及Rössler超混沌时间序列的仿 真结果证明所提方法的有效性. 相似文献
18.
One of the features of deterministic chaos is sensitive to initial conditions. This feature limits the prediction horizons of many chaotic systems. In this paper, we propose a new prediction technique for chaotic time series. In our method, some neighbouring points of the predicted point, for which the corresponding local Lyapunov exponent is particularly large, would be discarded during estimating the local dynamics, and thus the error accumulated by the prediction algorithm is reduced. The model is tested for the convection amplitude of Lorenz systems. The simulation results indicate that the prediction technique can improve the prediction of chaotic time series. 相似文献
19.
对于含噪混沌时间序列预测问题, 传统方法存在较大的经验性, 对预测误差的构成分析不足, 因而忽略了混沌动态重建与预测模型建立之间的差异性. 本文将实际预测误差分解为预测器偏差和输入扰动误差, 并对整体最小二乘和正则化两种全局预测方法进行分析比较, 进而说明整体最小二乘适用于混沌动态的重建, 对预测器偏差影响较大, 而正则化方法能够改善预测器敏感性, 对输入扰动误差影响较大. 通过两个仿真实例, 展示了混沌动态重建与预测模型建立之间的差异, 在对比最小二乘和正则化方法的同时验证了实际预测误差受预测器偏差和输入扰动误差共同作用. 并指出, 在实际操作时应在二者间寻求平衡, 以便使模型预测精度达到最优.
关键词:
混沌时间序列预测
噪声
整体最小二乘
正则化 相似文献
20.
提出了一种新颖的广义径向基函数神经网络模型,其径向基函数(RBF)的形式由生成函数确定.然后,给出了易实现的梯度学习算法,同时为了进一步提高网络的收敛速度和网络性能,又给出了基于卡尔曼滤波的动态学习算法.为了验证网络的学习性能,采用基于卡尔曼滤波算法的新型广义RBF网络预测模型对Mackey-Glass混沌时间序列和Henon映射进行了仿真.结果表明,所提出的新型广义RBF神经网络模型能快速、精确地预测混沌时间序列,是研究复杂非线性动力系统辨识和控制的一种有效方法.
关键词:
广义径向基函数神经网络
卡尔曼滤波
梯度下降学习算法
混沌时间序列
预测 相似文献