首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an NMR study on the structure of a DNA fragment of the human telomere containing three guanine-tracts, d(GGGTTAGGGTTAGGGT). This sequence forms in Na(+) solution a unique asymmetric dimeric quadruplex, in which the G-tetrad core involves all three G-tracts of one strand and only the last 3'-end G-tract of the other strand. We show that a three-repeat human telomeric sequence can also associate with a single-repeat human telomeric sequence into a structure with the same topology that we name (3 + 1) quadruplex assembly. In this G-quadruplex assembly, there are one syn.syn.syn.anti and two anti.anti.anti.syn G-tetrads, two edgewise loops, three G-tracts oriented in one direction and the fourth oriented in the opposite direction. We discuss the possible implications of the new folding topology for understanding the structure of telomeric DNA, including t-loop formation, and for targeting G-quadruplexes in the telomeres.  相似文献   

2.
Kinetics of unfolding the human telomeric DNA quadruplex using a PNA trap   总被引:6,自引:0,他引:6  
The kinetics of opening of the DNA quadruplex formed by the human telomeric repeat have been investigated using real-time fluorescence resonance energy transfer (FRET) measurements with a peptide nucleic acid (PNA) trap. It has been found that this opening is zero-order with respect to PNA, indicating that the initial step is a rate-limiting internal rearrangement of the quadruplex. A study of the temperature dependence of the rate of quadruplex opening was performed and the activation energy of the process estimated to be 98 +/- 8 kJ mol(-1).  相似文献   

3.
DNA guanine (G) quadruplexes are stabilized by an interesting variation of the hydrogen-bonding schemes encountered in nucleic acid duplexes and triplexes. In an attempt to use this mode of molecular recognition, we target a dimeric G-quadruplex formed by the Oxytricha nova telomeric sequence d(G(4)T(4)G(4)) with a peptide nucleic acid (PNA) probe having a homologous rather than complementary sequence. UV-vis and CD spectroscopy reveal that a stable hybrid possessing G-quartets is formed between the PNA and DNA. The four-stranded character of the hybrid and the relative orientation of the strands is determined by fluorescence resonance energy transfer (FRET) experiments. FRET results indicate that (i) the two PNA strands are parallel to each other, (ii) the two DNA strands are parallel to each other, and (iii) the 5'-termini of the DNA strands align with the N-termini of the PNA strands. The resulting PNA(2)-DNA(2) quadruplex shows a preference of Na(+) over Li(+) and displays thermodynamic behavior consistent with alternating PNA and DNA strands in the hybrid. The formation of this novel supramolecular structure demonstrates a new high-affinity DNA recognition mechanism and expands the scope of molecular recognition by PNA.  相似文献   

4.
The formation and stabilization of telomeric quadruplexes has been shown to inhibit the activity of telomerase, thus establishing telomeric DNA quadruplex as an attractive target for cancer therapeutic intervention. In this context, telomestatin, a G-quadruplex-specific ligand known to bind and stabilize G-quadruplex, is of great interest. Knowledge of the three-dimensional structure of telomeric quadruplex and its complex with telomestatin in solution is a prerequisite for structure-based rational drug design. Here, we report the relative stabilities of human telomeric quadruplex (AG3[T2AG3]3) structures under K+ ion conditions and their binding interaction with telomestatin, as determined by molecular dynamics simulations followed by energy calculations. The energetics study shows that, in the presence of K+ ions, mixed hybrid-type Tel-22 quadruplex conformations are more stable than other conformations. The binding free energy for quadruplex-telomestatin interactions suggests that 1:2 binding is favored over 1:1 binding. To further substantiate our results, we also calculated the change in solvent-accessible surface area (DeltaSASA) and heat capacity (DeltaCp) associated with 1:1 and 1:2 binding modes. The extensive investigation performed for quadruplex-telomestatin interaction will assist in understanding the parameters influencing the quadruplex-ligand interaction and will serve as a platform for rational drug design.  相似文献   

5.
A series of dinuclear ruthenium(II) complexes were synthesised, and the complexes were determined to be new highly selective compounds for binding to telomeric G‐quadruplex DNA. The interactions of these complexes with telomeric G‐quadruplex DNA were studied by using circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assays, isothermal titration calorimetry (ITC) and molecular modelling. The results showed that the complexes 1 , 2 and 4 induced and stabilised the formation of antiparallel G‐quadruplexes of telomeric DNA in the absence of salt or in the presence of 100 mM K+‐containing buffer. Furthermore, complexes 1 and 2 strongly bind to and effectively stabilise the telomeric G‐quadruplex structure and have significant selectivity for G‐quadruplex over duplex DNA. In comparison, complex 3 had a much lesser effect on the G‐quadruplex, suggesting that possession of a suitably sized plane for good π–π stacking with the G‐quadruplets is essential for the interaction of the dinuclear ruthenium(II) complexes with the G‐quadruplex. Moreover, telomerase inhibition by the four complexes and their cellular effects were studied, and complex 1 was determined to be the most promising inhibitor of both telomerase and HeLa cell proliferation.  相似文献   

6.
G-quadruplex conformations within a sequence of three quadruplex units of human telomeric DNA were studied by two-frequency pulsed electron paramagnetic resonance (EPR) spectroscopy. In contrast to some individual G-quadruplexes, within the higher-order human telomeric sequence a (3+1) hybrid structure is formed.  相似文献   

7.
8.
The interaction of phenyl‐substituted indolo[3,2‐b]quinolines with DNA G‐quadruplexes of different topology were studied by using a combination of spectroscopic and calorimetric methodologies. N5‐Methylated indoloquinoline derivatives (MePIQ) with an aminoalkyl side chain exhibit high affinities for the parallel‐stranded MYC quadruplex and a (3+1)‐hybrid structure combined with an excellent discrimination against the antiparallel thrombin‐binding aptamer (TBA) and the human telomeric (HT) quadruplexes. Dissociation constants for the binding of the ligand to the MYC quadruplex are in the submicromolar range, being below the corresponding dissociation constants for the antiparallel‐stranded quadruplexes by about one order of magnitude. Competition experiments with double‐helical DNA reveal the impact of indoloquinoline structural features on the selectivity for the parallel quadruplex relative to duplex DNA. Based on a calorimetric analysis binding to MYC is shown to be equally driven by favorable enthalpic and entropic contributions with no significant impact on the type of cation present.  相似文献   

9.
10.
3,6-Bis-peptide acridine and acridone conjugates have been designed and synthesised to selectively interact with G-quadruplex DNA. The ligand properties are peptide sequence dependent, the highest discrimination being obtained with the FRHR tetrapeptide (up to >50-fold specificity). Molecular modeling studies have helped us rationalise the data and suggest that human telomeric quadruplex DNA can readily accommodate tetrapeptides, and furthermore that FRHR contributes to stabilization of the complex by non-bonded interactions within the TTA loop pockets of the quadruplex. These studies indicate that targeting distinct features of a G-quadruplex with hybrid molecules is a promising strategy for discriminating between quadruplex and duplex DNA.  相似文献   

11.
Peptide nucleic acid (PNA) probes have been synthesized and targeted to quadruplex DNA. UV-vis and CD spectroscopy reveal that the quadruplex structure of the thrombin binding aptamer (TBA) is disrupted at 37 degrees C by a short PNA probe. The corresponding DNA probe fails to bind to the stable secondary structure at this temperature. Thermal denaturation experiments indicate surprisingly high thermal and thermodynamic stabilities for the PNA-TBA hybrid. Our results point to the nonbonded nucleobase overhangs on the DNA as being responsible for this stability. This "overhang effect" is found for two different PNA-DNA sequences and a variety of different overhang lengths and sequences. The stabilization offered by the overhangs assists the PNA in overcoming the stable secondary structure of the DNA target, an effect which may be significant in the targeting of biological nucleic acids, which will always be much longer than the PNA probe. The ability of PNA to invade a structured DNA target expands its potential utility as an antigene agent or hybridization probe.  相似文献   

12.
We have investigated the interaction of the intramolecular human telomeric DNA G-quadruplex with a hemicyanine-peptide ligand, by studying the rate of quadruplex opening with a complementary DNA oligonucleotide. By employing a minimal kinetic model, the relationship between the observed rate of quadruplex opening and the ligand concentration has enabled estimation of the dissociation constant. A van't Hoff analysis revealed the enthalpy and entropy changes of binding to be -77 +/- 22 kJ mol(-1) and -163 +/- 75 J mol(-1) K(-1), respectively. Arrhenius analyses of the rate constants of opening free and bound quadruplex gave activation energies of 118 +/- 2 and 98 +/- 10 kJ mol(-1), respectively. These results indicate that the presence of the ligand has only a small effect on the activation energy, suggesting that the unbinding of the ligand occurs after the transition state for quadruplex unfolding.  相似文献   

13.
A guanine-rich PNA dodecamer having the sequence H-G4T4G4-Lys-NH2 (G-PNA) hybridizes with a DNA dodecamer of homologous sequence to form a four-stranded quadruplex (Datta, B.; Schmitt, C.; Armitage, B. A. J. Am. Chem. Soc. 2003, 125, 4111-4118). This report describes quadruplex formation by the PNA alone. UV melting curves and fluorescence resonance energy transfer experiments reveal formation of a multistranded structure stabilized by guanine tetrads. The ion dependency of these structures is analogous to that reported for DNA quadruplexes. Electrospray ionization mass spectrometry indicates that both dimeric and tetrameric quadruplexes are formed by G4-PNA, with the dimeric form being preferred. These results have implications for the use of G-rich PNA for homologous hybridization to G-rich targets in chromosomal DNA and suggest additional applications in assembling quadruplex structures within lipid bilayer environments.  相似文献   

14.
DNA origami nanostructures are a versatile tool that can be used to arrange functionalities with high local control to study molecular processes at a single‐molecule level. Here, we demonstrate that DNA origami substrates can be used to suppress the formation of specific guanine (G) quadruplex structures from telomeric DNA. The folding of telomeres into G‐quadruplex structures in the presence of monovalent cations (e.g. Na+ and K+) is currently used for the detection of K+ ions, however, with insufficient selectivity towards Na+. By means of FRET between two suitable dyes attached to the 3′‐ and 5′‐ends of telomeric DNA we demonstrate that the formation of G‐quadruplexes on DNA origami templates in the presence of sodium ions is suppressed due to steric hindrance. Hence, telomeric DNA attached to DNA origami structures represents a highly sensitive and selective detection tool for potassium ions even in the presence of high concentrations of sodium ions.  相似文献   

15.
Various biologically relevant G-quadruplex DNA structures offer a platform for therapeutic intervention for altering the gene expression or by halting the function of proteins associated with telomeres. One of the prominent strategies to explore the therapeutic potential of quadruplex DNA structures is by stabilizing them with small molecule ligands. Here we report the synthesis of bisquinolinium and bispyridinium derivatives of 1,8-naphthyridine and their interaction with human telomeric DNA and promoter G-quadruplex forming DNAs. The interactions of ligands with quadruplex forming DNAs were studied by various biophysical, biochemical, and computational methods. Results indicated that bisquinolinium ligands bind tightly and selectively to quadruplex DNAs at low ligand concentration (~0.2-0.4 μM). Furthermore, thermal melting studies revealed that ligands imparted higher stabilization for quadruplex DNA (an increase in the T(m) of up to 21 °C for human telomeric G-quadruplex DNA and >25 °C for promoter G-quadruplex DNAs) than duplex DNA (ΔT(m) ≤ 1.6 °C). Molecular dynamics simulations revealed that the end-stacking binding mode was favored for ligands with low binding free energy. Taken together, the results indicate that the naphthyridine-based ligands with quinolinium and pyridinium side chains form a promising class of quadruplex DNA stabilizing agents having high selectivity for quadruplex DNA structures over duplex DNA structures.  相似文献   

16.
The topological diversity of DNA G‐quadruplexes may play a crucial role in its biological function. Reversible control over a specific folding topology was achieved by the synthesis of a chiral, glycol‐based pyridine ligand and its fourfold incorporation into human telomeric DNA by solid‐phase synthesis. Square‐planar coordination to a CuII ion led to the formation of a highly stabilizing intramolecular metal–base tetrad, substituting one G‐tetrad in the parent unimolecular G‐quadruplex. For the Tetrahymena telomeric repeat, CuII‐triggered switching from a hybrid‐dominated conformer mixture to an antiparallel topology was observed. CuII‐dependent control over a protein–G‐quadruplex interaction was shown for the thrombin–tba pair (tba=thrombin‐binding aptamer).  相似文献   

17.
Single‐stranded telomeric DNA tends to form a four‐base‐paired planar structure termed G‐quadruplex. Although kinds of G‐quadruplex structures in vitro have been documented in the presence of potassium or sodium, recognition of these DNA motifs (both in vitro and in vivo) is still an important issue in understanding the biological function of the G‐quadruplex structures in telomeres as well as developing anticancer agents. Herein we address this important question through the distinctive properties of a supramolecular system of cyanine dye 3,3′‐di(3‐sulfopropyl)‐4,5,4′,5′‐dibenzo‐9‐methyl‐thiacarbocyanine triethylammonium salt (MTC) upon binding to different DNA motifs. Interaction of MTC with hybrid/mixed G‐quadruplex results in a set of unique spectrophotometric signatures which are completely different from those arising from binding to other DNA motifs. Furthermore, such feature could be extended to map the locations of DNAs on interface. Linear duplex and mixed G‐quadruplex in human telomeres assembled on Au film and stained by MTC were directly recognized by confocal laser scanning microscopy (CLSM). All results suggested that MTC supramolecular system may be a good probe of specific G‐quadruplex structure.  相似文献   

18.
The ligands which can facilitate the formation and stabilize G‐quadruplex structures have attracted enormous attention due to their potential ability of inhibiting the telomerase activity and halting tumor cell proliferation. It is noteworthy that the abilities of the quaternary benzophenanthridine alkaloids (QBAs), the very important G‐quadruplex binders, in inducing the formation of human telomeric DNA G‐quadruplex structures, have not been reported. Herein, the interaction between single‐strand human telomeric DNA and three QBAs: Sanguinarine (San), Nitidine (Nit) and Chelerythrine (Che), has been investigated. Although these molecules are very similar in structure, they exhibit significantly different abilities in inducing oligonucleotide d(TTAGGG)4 (HT4) to specific G‐quadruplex structures. Our experimental results indicated that the best ligand San could convert HT4 into antiparallel G‐quadruplex structure completely, followed by Nit, which could transform to mixed‐type or hybrid G‐quadruplex structure partially, whereas Che could only transform to antiparallel G‐quadruplex structure in small quantities. The relative QBAs' inducing abilities as indicated by the CD data are in the order of San>Nit>Che. Further investigation revealed that the G‐quadruplex structures from HT4 induced by QBAs are of intramolecular motif. And only sequences with certain length could be induced by QBAs because of their positive charges which could not attract short chain DNA molecules to close to each other and form intermolecular G‐quadruplex. In addition, the factors that affect the interaction between HT4 and QBAs were discussed. It is proposed that the thickness of the molecular frame and the steric hindrance are the primary reasons why the subtle differences in QBAs' structure lead to their remarkable differences in inducing the formation of the G‐quadruplex structures.  相似文献   

19.
Nucleic (DNA) acids having contiguous stretch of G sequence form quadruplex structure, which is very critical to control cell division. Recently the existence of G-quadruplex in RNA is also reported in presence of monovalent metal ion. PNA is a promising DNA analogue which binds strongly to DNA to form PNA:DNA duplex or PNA(2):DNA triplex. PNA also forms quadruplexes such G-quadruplex and i-motif in G and C-rich sequences respectively. aep-PNA containing a prolyl ring is one of several PNA analogues that provide rigidity and chirality in backbone and has binding affinity to natural DNA which is higher than that of PNA. Here we examine the ability of aep-PNA-G to form a quadruplex by UV, CD and mass spectroscopic techniques.  相似文献   

20.
The interaction of G-quadruplex DNA with the macrocyclic compound BOQ1, which possesses two dibenzophenanthroline (quinacridine) subunits, has been investigated by a variety of methods. The oligonucleotide 5'-A(GGGT(2)A)(3)G(3), which mimics the human telomeric repeat sequence and forms an intramolecular quadruplex, was used as one model system. Equilibrium binding constants measured by biosensor surface plasmon resonance (SPR) methods indicate a high affinity of the macrocycle for the quadruplex conformation (K > 1 x 10(7) M(-)(1)) with two equivalent binding sites. The affinity of BOQ1 for DNA duplexes is at least 1 order of magnitude lower. In addition, the macrocycle is more selective than the monomeric control compound (MOQ2), which is not able to discriminate between the two DNA structures (K(duplex) approximately K(quadruplex) approximately 10(6) M(-)(1)). Strong binding of BOQ1 to G4 DNA sequences was confirmed by fluorometric titrations with a tetraplex-forming oligonucleotide. Competition dialysis experiments with a panel of different DNA structures, from single strands to quadruplexes, clearly established the quadruplex binding specificity of BOQ1. Fluorescence resonance energy transfer (FRET) T(m) experiments with a doubly labeled oligonucleotide also revealed a strong stabilization of the G4 conformation in the presence of BOQ1 (DeltaT(m) = +28 degrees C). This DeltaT(m) value is one of the highest values measured for a G-quadruplex ligand and is significantly higher than observed for the monomer control compounds (DeltaT(m) = +10-12 degrees C). Gel mobility shift assays indicated that the macrocycle efficiently induces the formation of G-tetraplexes. Strong inhibition of telomerase was observed in the submicromolar range (IC(50) = 0.13 microM). These results indicate that macrocycles represent an exciting new development opportunity for targeting DNA quadruplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号