首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The surface proton spin polarization created by the spin-polarization-induced nuclear Overhauser effect from optically polarized xenon can be transferred in a subsequent step by solid-state cross polarization to another nuclear spin species such as29Si. The technique exploits the dipolar interactions of xenon nuclear spins with high γ nuclei such as1H, and is experimentally simpler than direct polarization transfer from129Xe to heteronuclei such as13C and29Si.  相似文献   

2.
The relaxation time of liquid (129)Xe is very long (>15 min) and the signal at thermal equilibrium is weak. Therefore, determination of the absolute polarization enhancement of hyperpolarized (129)Xe by direct measurement is tedious. We demonstrate a fast and precise alternative, based on the dipolar field created by liquid hyperpolarized (129)Xe contained in a cylindrical sample tube. The dipolar field is homogeneous in the bulk of the tube and adds to the external field, causing a shift in the Larmor frequencies of all nuclear spins. We show that the frequency shift of the proton in CHCl(3) (chloroform), which dissolves homogeneously in xenon over a fairly broad temperature range, is an excellent probe for (129)Xe polarization. Frequency measurements are precise and the experiment is much faster than by direct measurement. Furthermore the (129)Xe polarization is minimally disturbed since no rf pulses are applied directly to (129)Xe and since chloroform is a fairly weak source of (129)Xe relaxation. The experiments are reproducible and require only standard NMR instrumentation.  相似文献   

3.
We report the use of an atomic magnetometer based on nonlinear magneto-optical rotation with frequency-modulated light to detect nuclear magnetization of xenon gas. The magnetization of a spin-exchange-polarized xenon sample (1.7 c m(3) at a pressure of 5 bars, natural isotopic abundance, polarization 1% ), prepared remotely to the detection apparatus, is measured with an atomic sensor. An average magnetic field of approximately 10 nG induced by the xenon sample on the 10 cm diameter atomic sensor is detected with signal-to-noise ratio approximately 10 , limited by residual noise in the magnetic environment. The possibility of using modern atomic magnetometers as detectors of nuclear magnetic resonance and in magnetic resonance imaging is discussed. Atomic magnetometers appear to be ideally suited for emerging low-field and remote-detection magnetic resonance applications.  相似文献   

4.
Thermodynamic limit of magnetization corresponding to the intact proton bath usually cannot be transferred in a single cross-polarization contact. This is mainly due to the finite ratio between the number densities of the high- and low-gamma nuclei, quantum-mechanical bounds on spin dynamics, and Hartmann-Hahn mismatches due to rf field inhomogeneity. Moreover, for fully hydrated membrane proteins refolded in magnetically oriented bicelles, short spin-lock relaxation times (T1ρ) and rf heating can further decrease cross polarization efficiency. Here we show that multiple equilibrations-re-equilibrations of the high- and low-spin reservoirs during the preparation period yield an over twofold gain in the magnetization transfer as compared to a single-contact cross polarization (CP), and up to 45% enhancement as compared to the mismatch-optimized CP-MOIST scheme for bicelle-reconstituted membrane proteins. This enhancement is achieved by employing the differences between the spin-lattice relaxation times for the high- and low-gamma spins. The new technique is applicable to systems with short T1ρ's, and speeds up acquisition of the multidimensional solid-state NMR spectra of oriented membrane proteins for their subsequent structural and dynamic studies.  相似文献   

5.
NMR-ON measurements have been performed for60CoFe−Si. The samples of Fe−Si (6 at. %) single crystal dish with the (110) surface were used. Rosonance measurements have been carried out with the magnetization direction along the <100> and the <111> axes. Five prominent resonances were found at 166, 162, 151, 147 and 135 Mllz. The resonance at 166 Mllz has been known to be due to60Co without neighbourt Si atoms. The resonances at 151 and 135 Mllz are due to60Co nuclei with one and two Si atom(s) in the 1st neighbour site, respectively. The resonances at 162 and 147 Mllz would be due to the contribution of the 3rd <111> and the <100> magnetization axes, the differences of the resonance width have been qualitatively explained using the dipolar field.  相似文献   

6.
Theoretical calculation and analysis of (13)C-{(1)H} dipolar spectra of small-size spin clusters is presented. Dipolar spectra simulated using the time-independent average Hamiltonian are compared with the dipolar profiles obtained by 2D and 3D (1)H-(13)C correlation experiments employing Lee-Goldburg off-resonance cross-polarization (LG-CP). It is demonstrated that the structural parameters such as interatomic distances as well as mutual orientation of internuclear vectors can be derived from the dipolar profiles of simple spin clusters. Simplified analysis of the dipolar spectra based on isolated-like spin-pair approach can be used only if interacting spin cluster is reduced to the three-spin system in which the angle between both internuclear vectors ranges from 45 degrees to 135 degrees . For other local arrangements of spin systems the produced dipolar spectra must be analyzed with high caution. Contributions of all interacting spins to dipolar evolution of (13)C magnetization are mutually mixed and cannot be easily separated. However, simplification of the dipolar spectra is achieved by selective excitation. Enhanced selectivity of LG-CP transfer due to the initial (1)H chemical-shift-evolution period makes it possible to construct the dipolar spectra from (1)H-(13)C cross-peak intensities for every detected (1)H-(13)C spin-pair. Consequently, isolated-like spin pair evolution of the detected (1)H-(13)C coherence dominates to the resulting dipolar profile, while the influence of other interacting spins is suppressed. However, this suppression is not quite complete and analysis of the selective dipolar spectra based on isolated-like spin-pair approach cannot be used generally. Especially evolution of long-range (1)H-(13)C coherence is still significantly affected by spin states of other coupled hydrogen atoms.  相似文献   

7.
Bulk magnetization and 1H static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of two magnetically heterogeneous model systems based on laponite (LAP) layered silicate or polystyrene (PS) with low and high proton concentration, respectively, and ferrimagnetic Fe2O3 nano- or micro-particles have been studied. In LAP+Fe2O3, a major contribution to the NMR signal broadening is due to the dipolar coupling between the magnetic moments of protons and magnetic particles. In PS+Fe2O3, due to the higher proton concentration in polystyrene and stronger proton–proton dipolar coupling, an additional broadening is observed, i.e. 1H MAS NMR spectra of magnetically heterogeneous systems are sensitive to both proton–magnetic particles and proton–proton dipolar couplings. An increase of the volume magnetization by ~1 emu/cm3 affects the 1H NMR signal width in a way that is similar to an increase of the proton concentration by ~2×1022/cm3. 1H MAS NMR spectra, along with bulk magnetization measurements, allow the accurate determination of the hydrogen concentration in magnetically heterogeneous systems.  相似文献   

8.
The process of obtaining sequential resonance assignments for heterogeneous polypeptides and large proteins by solid-state NMR (ssNMR) is impeded by extensive spectral degeneracy in these systems. Even in these challenging cases, the cross peaks are not distributed uniformly over the entire spectral width. Instead, there exist both well-resolved single resonances and distinct groups of resonances well separated from the most crowded region of the spectrum. Here, we present a series of new triple resonance experiments that exploit the non-uniform clustering of resonances in heteronuclear correlation spectra to obtain additional resolution in the more crowded regions of a spectrum. Homonuclear and heteronuclear dipolar recoupling sequences are arranged to achieve directional transfer of coherence between neighboring residues in the peptide sequence. A frequency-selective (soft) pulse is applied to select initial polarization from a limited (and potentially) well-resolved region of the spectrum. The pre-existing resolution of one or more spins is thus utilized to obtain additional resolution in the more crowded regions of the spectrum. A new protocol to utilize these experiments for sequential resonance assignments in peptides and proteins is also demonstrated.  相似文献   

9.
We provide evidence for a finite-temperature ferromagnetic transition in two dimensions as H -->0 in thin films of 3He on graphite, a model system for the study of two-dimensional magnetism. We perform pulsed and cw NMR experiments at fields of 0.03-0.48 mT on 3He at areal densities of 20.5-24.2 atoms/nm(2). At these densities, the second layer of 3He has a strongly ferromagnetic tendency. With decreasing temperature, we find a rapid onset of magnetization that becomes independent of the applied field at temperatures in the vicinity of 1 mK. Both the dipolar field and the NMR linewidth grow rapidly as well, which is consistent with a large (order unity) polarization of the 3He spins.  相似文献   

10.
The wide chemical shift dispersion and long T(1) of (13)C have allowed determination of in vivo magnetization transfer effects caused by aspartate aminotransferase and lactate dehydrogenase reactions using (13)C magnetic resonance spectroscopy. In this report, we demonstrate that these effects can be observed in the proton spectra by transferring the equilibrium magnetization of (13)C via the one-bond scalar coupling between (13)C and (1)H using an inverse insensitive nuclei enhanced by polarization transfer-based heteronuclear polarization transfer method. This inverse method allows a combination of the advantages of the long (13)C T(1) for maximum magnetization transfer and the high sensitivity of proton detection. The feasibility of this in vivo inverse polarization transfer approach was evaluated for detecting the (13)C magnetization transfer effect of aspartate aminotransferase and lactate dehydrogenase reactions from a 72.5-microl voxel in the rat brain at 11.7 T.  相似文献   

11.
Rotational resonance and radiofrequency-driven dipolar recoupling (RFDR) experiments have been used to recover the weak proton dipolar interaction present in peptides bound to swollen resins spun at the magic angle. The intensity of the correlation peaks obtained using these sequences is shown to be significantly stronger than the one obtained using the classical NOESY experiment. In addition, it is found that during the relatively long mixing times required to transfer magnetization in such soft materials, the RFDR sequence also achieves magnetization transfer via the scalar J-coupling.  相似文献   

12.
We present a systematic study of proton linewidths in rigid solids as a function of sample spinning frequency and proton density, with the latter controlled by the ratio of protonated and perdeuterated model compounds. We find that the linewidth correlates more closely with the overall proton density (rho(H)) than the size of local clusters of (1)H spins. At relatively high magic-angle spinning (MAS) rates, the linewidth depends linearly upon the inverse MAS rate. In the limit of infinite spinning rate and/or zero proton concentration, the linewidth extrapolates to a non-zero value, owing to contributions from scalar couplings, chemical shift dispersion, and B(0) field inhomogeneity. The slope of this line depends on the overall concentration of unexchangeable protons in the sample and the spinning rate. At up to 30% protonation levels ( approximately 2 (1)H/100A(3)), proton detection experiments are demonstrated to have a substantial (2- to 3-fold) sensitivity gain over corresponding (13)C-detected experiments. Within this range, the absolute sensitivity increases with protonation level; the optimal compromise between sensitivity and resolution is in the range of 20-30% protonation. We illustrate the use of dilute protons for polarization transfer to and from low-gamma spins within 5A, and to be utilized as both magnetization source and detection spins. The intermediate protonation regime enhances relaxation properties, which we expect will enable new types of (1)H correlation pulse sequences to be implemented with improved resolution and sensitivity.  相似文献   

13.
We studied the macroscopic effects of nuclear magnetization. Highly polarized xenon is often used to increase the sensitivity in NMR investigations of porous media, diluted liquids or for imaging in the gas phase. In the condensed phase, however, highly nuclear spin polarized xenon also possesses a sizable magnetization due to the nuclear spin density. This results in an additional magnetic field, that is used to measure the polarization of the sample, when only the particle density is known. Here we find Pz≈0.8 corresponding to a spin temperature of 0.5 mK. We use isotopically enriched xenon with a 129Xe abundance of 0.71. At high abundance of 129Xe and high nuclear polarization the dipolar linewidth is considerably reduced. We find for small angle excitation a reduction from 650 Hz to 400 Hz. We investigate this using a thin film geometry. The susceptibility effects of the substrate and the Xe film are treated. The macroscopic angle between the normal of the film and the external field strongly changes the polarization induced line shift and line width. The first follows an expected cos2θ dependence with an understood amplitude the latter however is not understood up to now. Relaxation of 129Xe in the condensed film is observed to be T1=15±1.8 min, much faster than expected. To cite this article: P. Gerhard et al., C. R. Physique 5 (2004).  相似文献   

14.
Conventional high resolution nuclear magnetic resonance (NMR) spectra are usually measured in homogeneous, high magnetic fields (>1 T), which are produced by expensive and immobile superconducting magnets. We show that chemically resolved xenon (Xe) NMR spectroscopy of liquid samples can be measured in the Earth's magnetic field (5 x 10(-5) T) with a continuous flow of hyperpolarized Xe gas. It was found that the measured normalized Xe frequency shifts are significantly modified by the Xe polarization density, which causes different dipolar magnetic fields in the liquid and in the gas phases.  相似文献   

15.
Incoherent spin motion, such as diffusion, can lead to significant signal loss in multiple spin echoes (MSE) experiments, sometimes to its complete extinction. Coherent spin motion, such as laminar flow, can also modify the magnetization in MSE imaging and yield additional contrast. Our experimental results indicate that MSE is flow-sensitive. Our theoretical analysis and experimental results show how the effect of the distant dipolar field can be annihilated by flow. This effect can be quantified by directly solving the nonlinear Bloch equation, taking into account the deformation of the dipolar field by motion. Unexpected results have been observed, such as a recovery of the dipolar interaction due to flow in the "magic angle" condition.  相似文献   

16.
The measurement of dipolar couplings between nuclei is a convenient way of obtatining directly liquid crystalline ordering through NMR since the coupling is dependent on the average orientation of the dipolar vector in the magnetic field which also aligns the liquid crystal. However, measurement of the dipolar coupling between a pair of selected nuclei is beset with problems that require special solutions. In this article the use of cross polarization for measuring dipolar couplings in liquid crystals is illustrated. Transient oscillations observed during cross polarization provide the dipolar couplings between essentially isolated nearest neighbour spins which can be extracted for several sites simultaneously by employing two-dimensional NMR techniques. The use of the method for obtaining heteronuclear dipolar couplings and hence the order parameters of liquid crystals is presented. Several modifications to the basic experiment are considered and their utility illustrated. A method for obtaining proton-proton dipolar couplings, by utilizing cross polarization from the dipolar reservoir, is also presented.  相似文献   

17.
Proton nuclear magnetic resonance (NMR) magnetization exchange is used to investigate residual dipolar couplings in a series of cross-linked poly(styrene-cobutadiene) elastomers. A new model for the dipolar unit is used for the evaluation of the signal decay in magnetization exchange experiments. It takes into account an extended residual dipolar coupling network along the polymer chain. It is shown that in the regime of short mixing times, information about the residual dipolar coupling between methine and methylene protons can be obtained which is not affected by other inter- and intramolecular dipolar couplings. The dynamic order parameter of methine-methylene protons is measured and correlated with cross-link density. This study certifies the quality of a filter for magnetization from residual dipolar couplings which exploit magnetization exchange. The filter can be used to generate contrast in NMR images of heterogeneous elastomers. The first proton NMR parameter image of a dynamic order parameter is presented for a phantom made from poly(styrene-cobutadiene) samples with different cross-link densities.  相似文献   

18.
Magnetic bubble films exhibit a number of ferrimagnetic resonance modes due to the spatial variation of the anisotropy. The resonance frequencies have been measured as a function of the applied bias fieldH 0. In the lower field range the magnetization of the transient layer, which has negative anisotropy, is not yet parallel toH 0. In this range the resonance frequencies are shifted to higher values due to pinning effects. In films grown by the vertical dipping method an additional layer on top of the transient layer is observed within which the magnetization rotates from the direction in the transient layer to that of the bulk of the film. In films grown by horizontal dipping no such layer could be detected. Each ferrimagnetic resonance mode excites transverse elastic waves in the film due to the magnetoelastic interaction and thus gives rise to elastic resonances of the whole crystal, film and substrate. These elastic resonances lead to a fine-structure of the ferrimagnetic resonances. The observed fine-structure vanishes periodically with frequency and from this behaviour the thickness of the magnetic film and of the transient layer has been determined.  相似文献   

19.
自旋扩散在固体核磁共振的许多现象中都起着非常重要的作用。现有几种理论方案以估算扩散系数。然而在实践中这种估算既不实际也不可靠。本文提出了确定自旋扩散速率的新方案,它利用的是CP MAS NMR中的稀核退极化规律。带质子的稀核磁化矢量在退极化中表现出两个阶段,慢衰减的第二阶段是单一指数过程,它提供了自旋扩散速率的直接度量。自旋扩散实质上是极化转移的一种宏观表现形式,这种转移通过一系列成对自旋的flip-flop进行,可以用一维随机走步模型描述。从退磁过程半对数曲线的斜率可以求得平均flip-flop时间。自旋扩散系数可以由此估算。在一些典型的刚性有机固体和结晶高分子聚合物中,求得平均flip-flop的时间是700微秒左右。它比偶极相关时间大一个数量级。这意味着,自旋扩散时间常数与自旋—自旋弛豫时间常数是很不相同的,虽然这两个相应过程虽密切相关的。由质子线宽估计自旋扩散系数是不可靠的。  相似文献   

20.
Our present understanding of the phenomenon of quantum tunneling of magnetization (QTM), is reviewed in the light of the experiments performed on the molecular complex Mn12-ac. This system, in which QTM was clearly shown for the first time, consists of molecules with mesoscopic spins in dipolar interactions. Both single and many-molecule effects are essential for the observation of QTM (crystal field, hyperfine and dipolar interactions), which allows one to make a link between mesoscopic physics and magnetism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号