首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fast, efficient separation of most common biogenic amines was successfully performed on a glass microchip capillary electrophoresis device. The amines putrescine, histamine, tyramine, cadaverine, phenethylamine, tryptamine, spermidine and spermine were derivatized prior to fluorescence detection with fluorescein isothiocyanate. Separation was carried out using a channel length of 28 mm, a cross section of 50 x 8 microm, and a field strength of 600 V/cm. After optimization of buffer electrolyte conditions (120 mM boric acid, pH 9.4, modified with 40 mM SDS), fluorescein thiocarbamyl amine derivatives were successfully resolved. Analysis time was as short as 75 s. Determination of the biogenic amines was achieved in soy sauce samples.  相似文献   

2.
A method of on-line chemiluminescence detection with capillary electrophoresis for biogenic amines (diaminopropane, putrescine, cadaverine and diaminohexane) labeled with N-(4-aminobutyl)-N-ethylisoluminol is reported for the first time. Two separation modes, capillary zone electrophoresis and micellar electrokinetic chromatography (MEKC), were studied. The results show that excellent resolution was achieved in MEKC. Parameters affecting separation process and chemiluminescence detection have been examined in detail. Under the optimum conditions, the baseline separation of four amines was obtained within 7.5 min. The detection limits (S/N=3) of diaminopropane, putrescine, cadaverine and diaminohexane are 3.5 x 10(-8), 3.5 x 10(-8), 3.9 x 10(-8) and 1.2 x 10(-7) M, respectively. The method was applied to the analysis of biogenic amines in lake water.  相似文献   

3.
This paper describes a simple method for the effective and rapid separation of hydrophobic molecules on polydimethylsiloxane (PDMS) microfluidic devices using Micellar Electrokinetic Chromatography (MEKC). For these separations the addition of sodium dodecyl sulfate (SDS) served two critical roles - it provided a dynamic coating on the channel wall surfaces and formed a pseudo-stationary chromatographic phase. The SDS coating generated an EOF of 7.1 x 10(-4) cm(2) V(-1) s(-1) (1.6% relative standard deviation (RSD), n = 5), and eliminated the absorption of Rhodamine B into the bulk PDMS. High efficiency separations of Rhodamine B, TAMRA (6-carboxytetramethylrhodamine, succinimidyl ester) labeled amino acids (AA), BODIPY FL CASE (N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)cysteic acid, succinimidyl ester) labeled AA's, and AlexaFluor 488 labeled Escherichia coli bacterial homogenates on PDMS chips were performed using this method. Separations of Rhodamine B and TAMRA labeled AA's using 25 mM SDS, 20% acetonitrile, and 10 mM sodium tetraborate generated efficiencies > 100,000 plates (N) or 3.3 x 10(6) N m(-1) in <25 s with run-to-run migration time reproducibilities <1% RSD over 3 h. Microchips with 30 cm long serpentine separation channels were used to separate 17 BODIPY FL CASE labeled AA's yielding efficiencies of up to 837,000 plates or 3.0 x 10(6) N m(-1). Homogenates of E. coli yielded approximately 30 resolved peaks with separation efficiencies of up to 600,000 plates or 2.4 x 10(6) N m(-1) and run-to-run migration time reproducibilities of <1% RSD over 3 h.  相似文献   

4.
A simple and rapid method has been developed for the determination of biogenic amines in lake water using micellar electrokinetic chromatography with fluorescence detection. Separation of fluorescamine derivatized biogenic amines was accomplished by using borate buffer of pH 9.5 containing 40 mM of sodium dodecyl sulphate. The method has been optimized with respect to fluorescamine concentration, reaction pH, reaction time, separation voltage and injection time. Detection was performed by using UG-11 excitation filter and 495 nm emission filter. The proposed method for histamine, tyramine and dopamine allowed their separation within 2 min with detection limits in nM range. The interday and intraday reproducibility of peak areas were less than 6.5%. Recovery of spiked samples was 95.76–116.31%.  相似文献   

5.
A polymer microchip with an open tip for electrospray mass spectrometry is presented. The tip consists of a groove with parallel walls where a droplet can form at the end surface. A lid covers the whole chip except at the microchannel tip, which is left open. Poly(dimethylsiloxane) (PDMS) microchips were cast using a nickel mould which in turn was replicated from a dry etched silicon wafer. Tips with microchannel widths of around 50 microm could easily be replicated. Since the tip had no cover, the assembly of microchip and cover was simplified. A total ion current variation of 5% during 300 s was achieved for a 1 microM myoglobin solution. The non-complex design of the cover makes it suitable for versatile tests of chip prototypes. The nickel mould was found to be useful for PDMS microstructure fabrication. Also, such a robust mould allows casting electrospray tips in more rigid thermoset materials.  相似文献   

6.
7.
The retention (migration) behaviour of various barbiturates, phenylurea and triazine herbicides in micellar electrokinetic chromatography (MEKC) with uncoated fused-silica capillaries was compared with the behaviour in micellar electrokinetic chromatography with reduced electroosmotic flow (RF-MEKC) using capillaries modified with linear polyacrylamide. The error in the values of the retention factors caused by the neglection of the contribution of the electroosmotic flow in RF-MEKC was investigated and a method for correcting this error was suggested. The retention was characterised using the lipophilic and polar indices to characterise and to predict the retention as a function of the concentration of the surfactant (sodium dodecylsulphate) in the running buffer in MEKC and in RF-MEKC. Homologous series of n-alkylbenzenes and of n-alkan-2-ones were compared as the standard sets for the calibration of the retention (migration) index scale. The values of the lipophilic indices of a given solute measured in reversed-phase HPLC, MEKC and RF-MEKC are close to each other. Under ideal MEKC conditions, the values of the polarity indices are close to one for various sample solutes. However, for partially ionised compounds such as weakly acidic barbiturates, where the contribution of the electrophoretic migration is significant, the values of the polarity indices are significantly lower than one. Optimum conditions for separations of mixtures of triazine and phenylurea herbicides and of barbiturates using various techniques tested were compared.  相似文献   

8.
Separation of twelve sympathomimetic amines and related compounds by micellar electrokinetic chromatography (MEKC) with UV absorbance detection is described. These amines were well separated within 25 min using 50 mM sodium tetraborate solution containing 15 mM sodium dodecylsulfate (SDS) of pH 9.3 as a running solution and detected at 210 nm. MEKC was performed with an applied voltage of 13 kV at 25 degrees C using a fused-silica capillary (50 cm x 75 mm i.d.) with effective length of 37.5 cm. The detection limits of these compounds were in the range from 4 to 97 fmol/injection at a signal-to-noise ratio (S/N) of 3. The reproducibility of the method expressed as relative standard deviation (RSD) for within-day (n=6) and between-day (n=5) assays was less than 4.8 and 8.8%, respectively. The proposed method could be applied to the determination of an anorectic drug, phentermine, in Chinese tea with a detection limit of 99 microg/g (105 fmol/injection, S/N=3).  相似文献   

9.
This review describes the quantitative analysis of in-capillary reactions by using capillary electrophoresis (CE) in the food industry. An electrophoretic analysis of products of an enzyme reaction of a substrate by in-capillary reaction was useful for the activity measurement of glucoamylase in sake rice koji. p-Nitrophenyl-beta-D-maltoside was employed as a substrate and p-nitrophenyl-beta-D-glucopyranoside was the product of the enzyme reaction. The glucoamylase activity of sake rice koji samples gave a good linear relationship with the peak area observed in the in-capillary enzyme reaction method. Also, in-capillary micellar electrokinetic chromatography (MEKC) was used for analyzing the Monascus pigment-mediated degradation of mutagenic 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole. During the electrophoresis, the mutagen and the pigment, due to their different migration velocities, mix for a certain period of time to interact, and then they are separated and quantitated. The in-capillary reaction MEKC method can be applied to the routine quality control of enzyme activities in the food industry and the evaluation of mutagenic compounds in food materials.  相似文献   

10.
11.
Cao L  Wang H  Ma M  Zhang H 《Electrophoresis》2006,27(4):827-836
An MEKC-LIF method using 6-oxy-(N-succinimidyl acetate)-9-(2'-methoxy-carbonyl) fluorescein (SAMF) newly synthesized in our lab as a labeling reagent for the separation and determination of eight typical biogenic amines was proposed. After careful study of the derivatization condition such as pH value, reagent concentration, temperature, and reaction time, derivatization reaction was accomplished as quickly as 10 min with stable yield. Optimal separation of SAMF-labeled amines was achieved with a running buffer (pH 9.3) containing 30 mM boric acid, 25 mM SDS, and 20% v/v ACN. The proposed method allowed biogenic amines to be determined with LODs as low as 0.25-2.5 nmol/L and RSD values from 0.4 to 4.5%. The present method has been successfully used to monitor biogenic amines in HeLa cells and fish samples. This study exploits the potential of MEKC-LIF with SAMF labeling as a tool for monitoring biogenic amines involved in complex physiological and behavioral processes in various matrices.  相似文献   

12.
Micellar electrokinetic chromatography (MEKC), which can separate neutral analytes as well as charged analytes by the capillary electrophoretic technique, was developed in 1982 and the first paper was published in 1984. The authors’ group concentrated their effort into the characterization of MEKC as a separation technique until early 1990s. Most issues in MEKC separations were successfully solved and wide applicability of MEKC was verified in 1990s. In particular, sweeping, an on-line sample preconcentration technique, was very successful for the concentration of neutral analyte as well as ionic ones. In this paper, our studies on MEKC will be summarized from the personal viewpoint of the author.  相似文献   

13.
A method for the determination of isoniazid (ISO), pyrazinamide (PYR) and rifampicin (RIF) in pharmaceutical products, by micellar electrokinetic capillary chromatography (MEKC) with ultraviolet detection is described. The influence of pH, concentration of surfactants, buffer and organic solvents, over the separation were studied as experimental variables. The optimal separation was carried out at 30 degrees C and 20 kV, using a 40 mM borate buffer and 100 mM sodium dodecylsulphate (SDS) adjusted to pH 8.5. Under these conditions, the analysis is accomplished in about 8 min. The method was applied to the determination of these compounds in different pharmaceuticals with good results when compared with a reference liquid chromatographic (LC) method.  相似文献   

14.
Ro KW  Hahn JH 《Electrophoresis》2005,26(24):4767-4773
Precolumn derivatization and chiral separation of DL-amino acids based on diastereomerization have been performed on an integrated poly(dimethylsiloxane) microchip. Diastereomeric derivatives were formed in a microfabricated precolumn reactor by the reaction of amino acid enantiomers with o-phthaldialdehyde/2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose (OPA/TATG), and separated by MEKC in an achiral environment without chiral selectors in the running buffer. Optimized precolumn reactions and chiral separations of amino acids were achieved within 2.5 min. Resolutions of diastereomers of OPA/TATG-amino acids were in the range of 2.5-6.1 at optimized separation conditions. Simultaneous separation of a mixture of five chiral amino acids was successfully performed in a single run in less than 100 s.  相似文献   

15.
Poly(dimethylsiloxane) microchip capillary electrophoresis with amperometric detection has been used for rapid separation and determination of acetaminophen and its hydrolysate, i.e. p-aminophenol. A Pt ultramicroelectrode with a diameter of 10 m positioned at the outlet of the separation channel was used as a working electrode for amperometric detection. Factors influencing separation and detection were investigated and optimized. Results show that acetaminophen and p-aminophenol can be well separated within 35 s with RSD<1% for migration time and <7% for detection current for both analytes. Detection limits for both analytes are estimated to be 5.0 mol L–1 (approximately 0.1 fmol) at S/N=3. This method has been successfully applied to the detection of traces of p-aminophenol in paracetamol tablets.  相似文献   

16.
Y Sera  N Matsubara  K Otsuka  S Terabe 《Electrophoresis》2001,22(16):3509-3513
On-line sample concentration by sweeping was investigated in microchip micellar electrokinetic chromatography (MEKC), By changing the distance between the injection cross and the detection points, the profile of the concentration process and the diffusion process in sweeping was elucidated. Rhodamine B injected for 4 s was best concentrated by sweeping at 9.4 mm from the injection cross and the enhancement factor was 450. At the longer distance from this point the peak of Rhodamine B was broadened and diluted by diffusion. The diffusion constant of Rhodamine B calculated from the experiment was 5.7 x 10(-6) cm2s(-1). The mixture of rhodamine B, sulforhodamine B, and cresyl fast violet was concentrated by sweeping and separated by MEKC at the same time.  相似文献   

17.
In this study, microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatography (MEKC) were compared for their abilities to separate and detect thirteen phenolic compounds (syringic acid, p-coumaric acid, vanillic acid, caffeic acid, gallic acid, 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, (+)-catechin, (-)-epigallocatechin, (-)-epicatechin gallate, (-)-epigallocatechin gallate, (-)-epicatechin, and (-)-gallocatechin), and two other ingredients (caffeine and theophylline) in teas and grapes. Separation of phenolic compounds was improved by changing the SDS concentration for MEEKC, but the SDS concentration rarely affected the resolution for MEKC. Organic modifier (acetonitrile or methanol) was found to markedly influence the resolution and selectivity for both MEEKC and MEKC systems. In addition, a higher voltage and a higher column temperature improved the separation efficiency without any noticeable reduction in resolution for MEEKC whereas they caused a poor resolution for the MEKC system. Although separations with baseline resolution were achieved by the optimized MEEKC and MEKC methods, the separation selectivity resulting from the proposed MEEKC method was completely different from that of MEKC.  相似文献   

18.
MEKC of standard proteins was investigated on PDMS microfluidic devices. Standard proteins were labeled with AlexaFluor(R) 488 carboxylic acid tetrafluorophenyl ester and filtered through a size-exclusion column to remove any small peptides and unreacted label. High-efficiency MEKC separations of these standard proteins were performed using a buffer consisting of 10 mM sodium tetraborate, 25 mM SDS, and 20% v/v ACN. A separation of BSA using this buffer in a 3.0 cm long channel generated a peak with a plate height of 0.38 microm in <20 s. Additional fast separations of myoglobin, alpha-lactalbumin, lysozyme, and cytochrome c also yielded peaks with plate heights ranging from 0.54 to 0.72 microm. All proteins migrated with respect to their individual pIs. To improve the separations, we used a PDMS serpentine chip with tapered turns and a separation distance of 25 cm. The number of plates generated increased linearly with increasing separation distance on the extended separation channel chips; however, the resolution reached an asymptotic value after about 7 cm. This limited the peak capacity of the separation technique to 10-12.  相似文献   

19.
A comparison of separations conducted in sodium dodecyl sulfate (SDS) and SDS modified with Brij 35 indicates that selectivity, in Micellar Electrokinetic Chromatography (MEKC), is governed by the composition of the micellar phase. Beyond selectivity optimization, resolution may be improved by increasing efficiency or decreasing electroosmotic flow. Of these approaches, increasing capillary length (to improve efficiency) should be a more time effective means of improving separation.  相似文献   

20.
Kuo CH  Lee SS  Chang HY  Sun SW 《Electrophoresis》2003,24(6):1047-1053
Micellar electrokinetic chromatography (MEKC) was used to separate twelve lignan compounds originating from Phyllanthus plants. To increase the reliability of peak identification, two micellar systems, the sodium dodecyl sulfate (SDS) and sodium deoxycholate (SDC) systems, were investigated. Because of the high lipophilicity of the lignan analytes, tetrahydrofuran was added to the SDS micellar system to increase its separating ability. In contrast to SDS system, no organic solvent was needed with SDC micelles. Both micellar systems gave a satisfactory separation within a reasonable analysis time. On considering accuracy for quantitation, the SDS method was validated and then used to determine the content of the lignans in two Phyllanthus plants. The selectivity (elution order of the lignans) was significantly different between the SDS and SDC micellar systems. Retention in SDC-MEKC seemed to be dominated by the hydrophobicity of the lignan solutes, while in SDS-MEKC, retention was greatly influenced by hydrogen bonding interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号