首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoinduced polymerization and photoinduced diffusion of molecular oxygen in thin C60 films irradiated by femtosecond laser pulses are investigated. A comparison of the Raman scattering and absorbed energy spectra and the irradiation doses required to observe photopolymerization using continuous-wave radiation and femtosecond pulses shows that the efficiency of both photoinduced processes decreases considerably in the latter case. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 4, 320–325 (25 August 1998)  相似文献   

2.
We report on the investigation of terahertz (THz) emission from gold-coated nanogratings (500 nm grating constant) upon femtosecond laser irradiation (785?nm, 150?fs, 1?kHz, ??1?mJ/pulse). Unlike common assumptions, THz emission is not only observed in case of rear side irradiation (through substrate (Welsh et al. in Phys. Rev. Lett. 98:026803, 2007; Welsh and Wynne in Opt. Express 17:2470?C2480, 2009)) of the nanograting, but also in case of front side excitation (through air). Furthermore in both cases, THz emission propagates in the direction of laser beam propagation and reverse. Based on these findings, we suggest a new approach to describe the newly observed phenomena. Using a highly sensitive and fast superconducting transition edge sensor (TES) as calorimeter, it was possible to directly measure the absolute energy of the emitted THz pulses in a defined spectral and spatial range, enabling for the first time a quantitative analysis of the THz emission process.  相似文献   

3.
4.
The phonon pulses initiated by photoexcitation of structures containing Si0.8Ge0.2 double quantum wells under picosecond radiation of a MIRA 900P titanium-sapphire laser (λ = 760 nm) are studied. The propagation of nonequilibrium acoustic phonons is detected with a superconducting bolometer. The recorded bolometer response is found to differ substantially from that observed in photoexcitation of the same structure by nanosecond pulses of a nitrogen laser (λ = 337 nm). The generation of coherent acoustic phonons is suggested as an explanation.  相似文献   

5.
6.
A general picture of refractive index change mechanisms in glass modified by a femtosecond laser has proven elusive. In this paper, Raman microscopy was used in conjunction with refractive near‐field profilometry to analyse the structure of borosilicate glass (Schott BK7) modified by a femtosecond laser and determine the mechanism of the observed refractive index change. For a pulse repetition rate of 1 kHz, it was determined that the refractive index change was due to an elevated population of non‐bridging oxygen atoms, resulting in more ionic bonds forming within the glass network and increasing the molar refractivity of the glass. For a pulse repetition rate of 5.1 MHz, the dominant mechanism of refractive index change was densification and rarefaction of the glass network. Different refractive index change mechanisms were attributed to different thermal conditions imparted to the glass under different pulse repetition rates. Implications for device fabrication are also discussed. These findings constitute an important step toward a complete overview of femtosecond‐laser‐induced refractive index change in glass. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications induced by the femtosecond laser radiation using selective chemical etching techniques, we fabricated reproducible and defined microstructures and further studied their morphologies and etching properties. Moreover, a possible physical mechanism for the femtosecond laser modification in soda-lime glass was proposed.  相似文献   

8.
Straight through-holes of high aspect ratio have been fabricated in glass by femtosecond laser pulses, utilizing unique characteristics of ultrafast lasers such as volumetric multi-photon absorption and nonlinear self-focusing. In this study, interestingly, the drilling process was initiated and progressed in a self-regulated manner, while the laser focus was fixed through the specimen at the neighborhood of the rear surface that was in contact with liquid during the entire drilling process. The deposition of laser energy along the nonlinearly extended focal range and the guided drilling along the pre-defined region are explained based on time-resolved optical transmission and emission measurements.  相似文献   

9.
We report the first observation, to our knowledge, of a glassy carbon (GC) layer modified from diamond-like carbon (DLC) films with femtosecond (fs) laser pulses. The GC layer, which is confirmed by Raman spectroscopy, is produced most efficiently at low laser fluence near the ablation threshold of the DLC films. This surface modification depends little on the laser polarization and wavelength used. The fs laser-induced GC layer should be a new thin-film material useful for a variety of engineering applications due to its characteristics similar to those of DLC and the additional properties inherent in GC. PACS 61.80.Ba; 79.20.Ds; 42.62.Cf  相似文献   

10.
Formation of nanoparticles of either Au or Ag is reported under ablation of metallic targets exposed to radiation of a femtosecond Ti:sapphire laser (wavelength of 810 nm, pulse width of 120 fs) in either water or ethanol. Nanoparticles are characterized by UV-visible spectroscopy and transmission electron microscopy. Nanoparticles of Ag are several times smaller than those of Au at otherwise equal conditions. The effect is attributed to the self-influence of a laser beam via generation of the second harmonics of the laser radiation on Ag clusters and its good matching to the plasmon resonance of Ag. PACS 42.62.-b; 61.46.+w; 78.66.-w  相似文献   

11.
The inverse Faraday effect in iron garnet films subjected to femtosecond laser pulses is experimentally investigated. It is found that the magnitude of the observed effect depends nonlinearly on the energy of the optical pump pulses, which is in contradiction with the notion that the inverse Faraday effect is linear with respect to the pump energy. Thus, for pump pulses with a central wavelength of 650 nm and an energy density of 1 mJ/cm2, the deviation from a linear dependence is as large as 50%. Analysis of the experimental data demonstrates that the observed behavior is explained by the fact that the optically induced normal component of the magnetization is determined, apart from the field resulting from the inverse Faraday effect, by a decrease in the magnitude of the precessing magnetization under the influence of the femtosecond electromagnetic field.  相似文献   

12.
The interaction between femtosecond laser radiation in the filamentation mode and lithium fluoride optical ceramics is investigated experimentally. It is shown that irradiating optical ceramics based on lithium fluoride with femtosecond laser pulses in the near infrared spectral region effectively produces luminescence centers characteristic of radiation-colored single crystals.  相似文献   

13.
Deep drilling of metals by femtosecond laser pulses   总被引:3,自引:0,他引:3  
Results of recent investigations on deep drilling of metals by femtosecond laser pulses are reported. At high laser fluences, well above the ablation threshold, femtosecond lasers can drill deep, high-quality holes in metals without any post-processing or special gas environment. It is shown that for high-quality drilling of metals, the following processes are important: (1) laser-induced optical breakdown of air containing metal vapor and small metal particles (debris) generated by multi-pulse femtosecond laser ablation, (2) transformation of laser pulses into light filaments, and (3) low-fluence finishing. Received: 15 November 2002 / Accepted: 20 January 2003 / Published online: 28 May 2003 RID="*" ID="*"Corresponding author. Fax: +49-511/2788-100, E-mail: ch@lzh.de  相似文献   

14.
The damage morphology of germanium surfaces using femtosecond laser pulses of various fluences and number of pulses is reported. The single pulse damage threshold in the present experiment was 9.7±4.0×10−13 W/cm2. The experimental threshold value was compared with theory, considering the damage threshold as the melting threshold. The cooling rate calculated on the basis of present results is 2.4×1015°C/s. Recrystallization was the common feature of the damage morphology. For fluences greater than the single pulse damage-threshold micropits and spherical grains of micron size were formed in the damaged surface. Ablation (surface removal) was also observed at higher fluences (at two or three times of damage threshold value). The damage morphology, induced by multiple pulses, was unaffected for linear and circular polarization.  相似文献   

15.
Laser action is demonstrated in a 20-mm-long waveguide fabricated on an Er:Yb-doped phosphate glass by femtosecond laser pulses. An output power of 1.7 mW with approximately 300 mW of pump power coupled into the waveguide is obtained at 1533.5 nm. Waveguides are manufactured with the 520-nm radiation from a frequency-doubled, diode-pumped, cavity-dumped Yb:glass laser operating at a 166-KHz repetition rate, with a 300-fs pulse duration.  相似文献   

16.
Fabrication of magneto-optical microstructure by femtosecond laser pulses   总被引:1,自引:0,他引:1  
We investigate femtosecond laser direct writing (FLDW) in the fabrication of magneto-optical (MO) microstructures. The experimental results show that FDLW can introduce positive refractive index change in the MO materials. With the increase of the writing intensity of femtosecond laser pulses, refractive index change increases, whereas Verdet constant of the damaged area decreases nonlinearly. With suitable writing intensity, we obtain a single-mode waveguide in which Verdet constant is 80% of the bulk MO glass.  相似文献   

17.
Analysis of the spatial distribution of the color centers formed in wide-gap LiF and MgF2 crystals in a laser beam channel has shown that these centers are formed in numerous longitudinal filaments into which a laser beam splits when propagating in a medium. The luminescence of the produced color centers is photoluminescence, which is excited by the supercontinuum radiation in the filaments.  相似文献   

18.
The strong influence of laser polarization on the orientation and shape of femtosecond-laser-induced self-organized nanostructures (‘ripples’, LIPSS) still constitutes an open question, taking into account that the laser electric field is present only at the first step of electronic excitation. Based on the explanation of similar structures generated during ion sputtering, we present a theoretical model indicating a possible explanation for this phenomenon. Our model shows that a directional asymmetry in the pattern can result from a spatial asymmetry of the initial excitation, induced e.g. by a corresponding distribution of excited-electron kinetic energies. Numerical simulation of this model yields typical patterns which are compared to experimental observations under appropriate conditions.  相似文献   

19.
20.
The results of the numerical study of the supercontinuum generation by high power femtosecond laser pulses in transparent dielectrics, taking into account the group-velocity dispersion, are presented. The contribution of induced photoionization processes to the supercontinuum generation was analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号