首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We report results from molecular dynamic simulations of the freezing transition of liquid water in the nanoscale hydrophobic confinement under the influence of a homogeneous external magnetic field of 10 T along the direction perpendicular to the parallel plates. A new phase of bilayer crystalline ice is obtained at an anomalously high freezing temperature of 340 K. The water-to-ice translation is found to be first order. The bilayer ice is built from alternating rows of hexagonal rings and rhombic rings parallel to the confining plates, with a large distortion of the hydrogen bonds. We also investigate the temperature shifts of the freezing transition due to the magnetic field. The freezing temperature, below which the freezing of confined water occurs, shifts to a higher value as the magnetic field enhances. Furthermore, the temperature of the freezing transition of confined water is proportional to the denary logarithm of the external magnetic field.  相似文献   

2.
Water within pores of cementitious materials plays a crucial role in the damage processes of cement pastes, particularly in the binding material comprising calcium-silicate-hydrates (C-S-H). Here, we employed Grand Canonical Monte Carlo simulations to investigate the properties of water confined at ambient temperature within and between C-S-H nanoparticles or "grains" as a function of the relative humidity (%RH). We address the effect of water on the cohesion of cement pastes by computing fluid internal pressures within and between grains as a function of %RH and intergranular separation distance, from 1 to 10 ?. We found that, within a C-S-H grain and between C-S-H grains, pores are completely filled with water for %RH larger than 20%. While the cohesion of the cement paste is mainly driven by the calcium ions in the C-S-H, water facilitates a disjoining behavior inside a C-S-H grain. Between C-S-H grains, confined water diminishes or enhances the cohesion of the material depending on the intergranular distance. At very low %RH, the loss of water increases the cohesion within a C-S-H grain and reduces the cohesion between C-S-H grains. These findings provide insights into the behavior of C-S-H in dry or high-temperature environments, with a loss of cohesion between C-S-H grains due to the loss of water content. Such quantification provides the necessary baseline to understand cement paste damaging upon extreme thermal, mechanical, and salt-rich environments.  相似文献   

3.
We report structural and dynamical properties of water confined within reverse micelles (RMs) ranging in size from R = 10 A to R = 23 A as determined from molecular dynamics simulations. The low-frequency infrared spectra have been calculated using linear response theory and depend linearly on the fraction of bulklike water within the RMs. Furthermore, these spectra show nearly isosbestic behavior in the region near 660 cm(-1). Both of these characteristics are present in previously measured experimental spectra. The single dipole spectra for interfacial trapped, bound, and bulklike water within the RMs have also been calculated and show region-dependent frequency shifts. Specifically, the bound and trapped water spectra have a peak at lower frequencies than that for the inner core water. We therefore assign the low-frequency band in the IR spectra to bound and trapped interfacial water. Finally, region-dependent hydrogen bonding profiles and spatial distribution functions are also presented.  相似文献   

4.
We report on attenuated total reflection Fourier-transform infrared (ATR FTIR) spectroscopic measurements on oriented lipid multilayers of N,N-dimethyl-N,N-dioctadecyl-ammonium halides (DODAX, X = F, Cl, Br, I). The main goal of this study is the investigation of the structure and spectroscopic properties of water absorbed to these model membranes. Intensities of the water stretch absorptions were used to determine the amount of bound water. At high water activity, DODAF membranes bind ~11 water molecules/lipid while DODAC and DODAB adsorb 1-2 water/lipid and DODAI was hydrophobic. By adjustment of DODAF hydration to ~2 water molecules, stretching absorptions from water of the first hydration shell were accessible for the fluoride, chloride, and bromide analogs. The polarized measurements demonstrate highly confined and oriented water with infrared (IR) order parameters ranging from 0.2 to -0.4. Resolved IR water band components are attributed to different hydrogen-bonded populations. Complementary molecular dynamics simulations of DODAB strongly support the existence of differently hydrogen-bonded and oriented water within DODAB multilayers. A combination of both techniques was used for an assignment of water stretch band components to structures. The described cationic lipid systems are a prototype for a bottom-up approach to understand the IR spectroscopy of structured water at biological interfaces since they permit a defined increase of hydrophilic water-anionic interactions leading to extended water networks at membranes.  相似文献   

5.
We performed a neutron scattering study to investigate the dynamical behavior of water absorbed in Nafion at low hydration level as a function of temperature in the range 200-300 K. To single out the spectral contribution of the confined water, the measurements were done on samples hydrated with both H(2)O and D(2)O. Due to the strong incoherent scattering cross section of hydrogen atoms with respect to deuterium, in the difference spectra, the contribution from the Nafion membrane is subtracted out and the signal originates essentially from protons in the liquid phase. The main quantities we extracted as a function of the momentum transfer are the elastic incoherent structure factor (EISF) and the line width of the quasielastic component. Their trend suggests that the motion of hydrogen atoms can be schematized as a random jumping inside a confining region, which can be related to the boundaries of the space where water molecules move in the cluster they form around the sulfonic acid site. Through the calculated EISF, we obtained information on the size of such a region, which increases up to 260 K and then attains a constant value. Above this temperature, the number of water protons that are dynamically activated in the accessible time window increases with a faster rate. The jump diffusion dynamics is characterized by a typical jumping time which is stable at 5.3 ps up to approximately 260 K and then gradually decreases. The ensemble of the findings indicates that, within the limits of the energy resolution of the present experiment, water absorbed in the Nafion membrane undergoes a dynamical transition at around 260 K. We discuss the possible relationship of this dynamical onset with the behavior of the electrical conductivity of the membrane as a function of the temperature.  相似文献   

6.
A surface force balance with extremely high sensitivity and resolution for measuring shear forces across thin films has been used to investigate directly the dynamic properties of salt-free water (so-called conductivity water) in a gap between two atomically smooth solid surfaces. Our results reveal that no shear stress can be sustained by water (within our resolution and shear rates) down to films of thickness D = D0 = 0.0 +/- 0.3 nm. At short range (D < 3.5 +/- 1 nm), an attractive van der Waals (vdW) force between the surfaces causes a jump into a flat adhesive contact at D0, at which the surfaces rigidly couple. Analysis of the jump behavior reveals that the viscosity of water remains within a factor of 3 or so of its bulk value down to D0. This contrasts sharply with the case of confined nonassociating liquids, whose effective viscosity increases by many orders of magnitude at film thicknesses lower than about five to eight monolayers. We attribute this to the fundamentally different mechanisms of solidification of organic liquids and of water. In the former case, the density increase induced in the films by the confinement promotes solidification, while, in the case of water, such densification (due to vdW attraction between the liquid molecules and the confining walls), in agreement with bulk behavior, suppresses the tendency of the water to solidify.  相似文献   

7.
A semianalytical, continuum analysis of evaporation of water confined in a cylindrical nanopore is presented, wherein the combined effect of electrostatic interaction and van der Waals forces is taken into account. The equations governing fluid flow and heat transfer between liquid and vapor phases are partially integrated analytically, to yield a set of ordinary differential equations, which are solved numerically to determine the flow characteristics and effect on the resulting shape and rate of evaporation from the liquid-vapor interface. The analysis identifies three important parameters that significantly affect the overall performance of the system, namely, the capillary radius, pore-wall temperature, and the degree of saturation of vapor phase. The extension of meniscus is found to be prominent for smaller nanoscale capillaries, in turn yielding a greater net rate of evaporation per unit pore area. The effects of temperature and ambient vapor pressure on net rate of evaporation are shown to be analogous. An increase in pore-wall temperature, which enhances saturation pressure, or a decrease in the ambient vapor pressure result in enhancing the net potential for evaporation and increasing the curvature of the interface.  相似文献   

8.
We report further molecular dynamics simulations on the structure of bound hydration layers under extreme confinement between mica surfaces. We find that the liquid phase of water is maintained down to 2 monolayer (ML) thick, whereas the structure of the K(+) ion hydration shell is close to the bulk structure even under D = 0.92 nm confinement. Unexpectedly, the density of confined water remains approximately the bulk value or less, whereas the diffusion of water molecules decreases dramatically. Further increase in confinement leads to a transition to a bilayer ice, whose density is much less than that of ice Ih due to the formation of a specific hydrogen-bonding network.  相似文献   

9.
The acid–base properties of nanoscopic water confined in the black soap films (BSFs), which were prepared from aqueous solutions of sodium dodecylsulphate (SDS) with the dye neutral red (NR) as a pH probe, were investigated using a combination of UV–vis and FTIR spectroscopy. For the SDS micellar solutions at pH 1.0–9.5 adjusted with HCl/NaOH solutions and at pH 9.4 with ammonium buffered solution, the aqueous core thicknesses in the corresponding BSFs ranged from 2.7 to 6.2 nm, and the nanoscopically confined water exhibits unusual buffer action resistant not only to acidic/alkaline solutions but also to standard buffer solution. In the heavily water-depleted confined zones, it is most likely that charge pairs in proton-transfer reactions could not be formed effectively and proton transfer was prohibited in the absence of sufficient solvating ability. Theoretical analyzes indicated that the buffer action of the nanoscopic water originated from the confinement effect of two charged surfaces of the BSFs. These results might inspire deeper understanding and further studies of biobuffering, enzyme superactivity, acid-catalyzed reactions, and Nafion fuel cell membranes.  相似文献   

10.
Confining water in lab synthesized nanoporous silica matrices MCM-41-S with pore diameters of 18 and 14 A, we have been able to study the molecular dynamics of water in deeply supercooled states, down to 200 K. Using quasielastic neutron scattering and analyzing the data with the relaxing cage model, we determined the temperature variation of the average translational relaxation time and its Q-dependence. We find a clear evidence of an abrupt change of the relaxation time behavior at T approximately equal to 225 K, which we interpreted as the predicted fragile-to-strong liquid-liquid transition.  相似文献   

11.
The distribution of hydrophobic solutes, such as methane, enclosed in a nanosized water droplet contained in a reverse micelle of diameter 2.82 nm is investigated using Monte Carlo simulations. The effect of the hydrophobic solute's atomic diameter on the solute-solute potential of mean force is also studied. The study reveals that confinement has a strong influence on the solute's tendency to associate. The potential of mean force exhibits only a single minimum, indicating that the contact pair is the only stable configuration between solutes. The solvent-separated pair that is universally observed for small solutes in bulk water is conspicuously absent. This enhanced hydrophobic effect is attributed to the lack of sufficient water to completely hydrate and stabilize the solvent-separated configurations. The study is expected to be important in understanding the role of hydrophobic forces during protein folding and nucleation under confinement.  相似文献   

12.
Chaperonins engulf other proteins and accelerate their folding by an unknown mechanism. Here, we combine all-atom molecular dynamics simulations with data from experimental assays of the activity of the bacterial chaperonin GroEL to demonstrate that a chaperonin's ability to facilitate folding is correlated with the affinity of its interior surface for water. Our results suggest a novel view of the behavior of confined water for models of in vivo protein folding scenarios.  相似文献   

13.
We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.  相似文献   

14.
Cyclodextrin nanosponges (CDNS) are a very promising class of cross-linked polymers, made up of cyclodextrins. CDNS swollen in aqueous solution give rise to cyclodextrin-based hydrogel in different states—gel or liquid suspension—depending on the hydration level of the system. Here we present a thorough inspection of the vibrational dynamics of these hydrogel by Raman scattering experiments, with the aim of clarifying the role played by the hydrogen-bond dynamics of water molecules confined into the nano-sized pores of nanosponges in determining the rigidity of the hydrogel network and their maximum water-holding capacity. Changes occurring in the spectral shape of the OH stretching band of water were interpreted by accounting the connectivity pattern of water molecules concurring to the gelation process. Spectral deconvolution analysis gives evidence of the existence of a characteristic cross-over hydration level associated to the rearrangement of water molecules in more cooperative, bulk-like networks as a consequence of saturation sites of water confinement of nanosponges. This interpretation is further confirmed by the inspection of the estimated collective intensities. These findings also support the existence of a specific phase diagram of the cyclodextrin nanosponges hydrogel, where the molecular structure of the cross-linking agent used during the synthesis of nanosponge plays a fundamental role in defining the nano- and microscopic properties of the system.  相似文献   

15.
The picosecond dynamics of a bifunctional and H-bonding molecule, 7-hydroxyquinoline (7HQ), has been studied in a reverse micelle with increasing water content. The fluorescence kinetics has a complex behavior as the water content is changed. All reactions are irreversible, and a two-step mechanism is invoked to explain the observations. H2O/D2O exchange and excitation energy effects show that the second step has a higher barrier and that the corresponding reaction occurs through tunneling. The results clearly indicate two regimes of water nanopool behavior switching at W0 approximately 5 (W0 = [water]/[surfactant]). Water collective dynamics explains these observations. The lower fluidity of confined water within the reverse micelle with respect to normal bulk water alters the related H-bond network dynamics and therefore is responsible for the slower proton-transfer processes.  相似文献   

16.
We report the results of molecular simulation of water in silica nanopores at full hydration and room temperature. The model systems are approximately cylindrical pores in amorphous silica, with diameters ranging from 20 to 40 ?. The filled pores are prepared using grand canonical Monte Carlo simulation and molecular dynamics simulation is used to calculate the water structure and dynamics. We found that water forms two distinct molecular layers at the interface and exhibits uniform, but somewhat lower than bulk liquid, density in the core region. The hydrogen bond density profile follows similar trends, with lower than bulk density in the core and enhancements at the interface, due to hydrogen bonds between water and surface non-bridging oxygens and OH groups. Our studies of water dynamics included translational mean squared displacements, orientational time correlations, survival probabilities in interfacial shells, and hydrogen bond population relaxation. We found that the radial-axial anisotropy in translational motion largely follows the predictions of a model of free diffusion in a cylinder. However, both translational and rotational water mobilities are strongly dependent on the proximity to the interface, with pronounced slowdown in layers near the interface. Within these layers, the effects of interface curvature are relatively modest, with only a small increase in mobility in going from the 20 to 40 ? diameter pore. Hydrogen bond population relaxation is nearly bulk-like in the core, but considerably slower in the interfacial region.  相似文献   

17.
The formation of molecular hydrogen in the radiolysis of water confined in nanoscale pores of well-characterised porous silica glasses and mesoporous molecular sieves (MCM-41) is examined. The comparison of dihydrogen formation by irradiation of both materials, dry and hydrated, shows that a large part of the H2 comes from the surface of the material. The radiolytic yields, G(H2)=(3+/-0.5)x10(-7) mol J(-1), calculated using the total energy deposited in the material and the water, are only slightly affected by the degree of hydration of the material and by the pore size. These yields are also not modified by the presence of hydroxyl radical scavengers. This observation proves that the back reaction between H2 and HO(.) is inoperative in such confined environments. Furthermore, the large amount of H2 produced in the presence of different concentrated scavengers of the hydrated electron and its precursor suggests that these two species are far from being the only species responsible for the H2 formation. Our results show that the radiolytic phenomena that occur in water confined in nanoporous silica are dramatically different to those in bulk water, suggesting the need to investigate further the chemical reactivity in this type of environment.  相似文献   

18.
19.
The dynamics of water confined to mesoporous regions in minerals such as swelling clays and zeolites is fundamental to a wide range of resource management issues impacting many processes on a global scale, including radioactive waste containment, desalination, and enhanced oil recovery. Large-scale atomic models of freely diffusing multilayer smectite particles at low hydration confined in a silicalite cage are used to investigate water dynamics in the composite environment with the ReaxFF reactive force field over a temperature range of 300-647 K. The reactive capability of the force field enabled a range of relevant surface chemistry to emerge, including acid/base equilibria in the interlayer calcium hydrates and silanol formation on the edges of the clay and inner surface of the zeolite housing. After annealing, the resulting clay models exhibit both mono- and bilayer hydration structures. Clay surface hydration redistributed markedly and yielded to silicalite water loading. We find that the absolute rates and temperature dependence of water dynamics compare well to neutron scattering data and pulse field gradient measures from relevant samples of Ca-montmorillonite and silicalite, respectively. Within an atomistic, reactive context, our results distinguish water dynamics in the interlayer Ca(OH)(2)·nH(2)O environment from water flowing over the clay surface, and from water diffusing within silicalite. We find that the diffusion of water when complexed to Ca hydrates is considerably slower than freely diffusing water over the clay surface, and the reduced mobility is well described by a difference in the Arrhenius pre-exponential factor rather than a change in activation energy.  相似文献   

20.
In a variety of biological scenarios water is found trapped within hydrophobic environments (e.g., ion channels). Its behavior under such conditions is not well understood and therefore is attracting enormous scientific attention. It is of particular interest to understand how the confining environment affects both the structure and dynamics of water. Within this scenario, we report molecular dynamics simulation results for water trapped in a mixture of acetone and carbon tetrachloride whose composition mimics the one employed in recently reported experiments [Gilijamse, J. J.; et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3202]. We show here that the water molecules dissolved in the carbon tetrachloride-acetone mixture assemble in clusters of varying sizes, that the longevity of hydrogen bonds between confined water molecules strongly depends on the cluster size, and that hydrogen bonds last longer for small water clusters in confined water than they do in bulk water. The simulated FT-IR spectra for the confined water are shifted at longer frequencies compared to those observed for bulk liquid water. We discuss the dependence of the FT-IR spectrum on the size of the water clusters dispersed in the carbon tetrachloride-acetone matrix. We also study in detail the rotational orientation of the dispersed water molecules, and we discuss how the composition of the organic matrix affects the results. By enhancing the interpretation of the experimental data, our results contribute to developing a molecular-based understanding of the relationship between environment and water properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号