首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with a new type of SiC bonding where silicon atom seems to bridge C60 molecules. We have studied films obtained by deposition of (C60)nSim clusters prepared in a laser vaporization source. Prior deposition, free ionized clusters were studied in a time-of-flight mass spectrometer. Mixed clusters (C60)nSim were clearly observed. Abundance and photofragmentation mass spectroscopies revealed the relatively high stability of the (C60)nSi n + , (C60)nSi n - 1 + and (C60)nSi n - 2 + species. This observation is in favor of the arrangement of these complexes as polymers where the C60 cages may be bridged by a silicon atom. Free neutral clusters are then deposited onto substrate making up a nanogranular thin film ( 100 nm). The film is probed by Auger and X-ray photoemission spectroscopies, but above all by surface enhanced Raman scattering. The results suggest an unusual chemical bonding between silicon and carbon and the environment of the silicon atom is expected to be totally different from the sp3 lattice: ten or twelve carbon neighbors might surround silicon atom. The bonding is discussed to the light of the so-called fullerene polymerization as observed for pure fullerite upon laser irradiation. This opens a new route for bridging C60 molecules together with an appreciable energy bonding, since the usual van der Waals bonding in fullerite could be replaced by an ionocovalent bond. Such an assumption must be checked in the future by XAS and EXAFS experiments. Received 15 November 2000  相似文献   

2.
Two types of extreme collective motion, large-amplitude many-phonon vibration of the ionic core and rotation of the cluster with high angular momenta, are considered. The interplay between vibration and collective motion towards fission is discussed. A new mechanism of formation and rupture of the neck is proposed which is based on the Franck-Condon principle, and accounts for the interplay between vibration and fission. Under rotation, the change of the shape of the cluster and a phase transition from axially symmetric to triaxial ellipsoid are predicted. For studying the effects, vibrational motion can be induced by laser radiation. Rotational motion may arise in collisions of clusters. Received 26 April 2001 and Received in final form 15 October 2001  相似文献   

3.
Systematic study of small BN clusters   总被引:2,自引:0,他引:2  
We performed a systematic investigation of the small BxNy (x + y? 6) clusters using the ab initio Hartree-Fock scheme plus second-order perturbation theory. The nature of the potential energy surface extrema are analyzed through analytical total energy second derivatives. Ionization potentials, binding energies and the stability against some possible reaction mechanisms are calculated. Based on these results we propose that the growing process for these clusters is mainly due to the successive incorporation of BN molecules. A discussion of some mass spectrometry experimental results is also presented. Received 2 October 2000  相似文献   

4.
Neutral ammonia clusters (NH3)m are photo-excited to the electronic state by a deep UV femtosecond laser pump pulse. Within a few hundred femtoseconds a significant fraction of the clusters rearrange to form an H-transfer state (NH3)m-2NH4(3s)NH2 with the subunit NH4 in its 3s electronic ground state. This state is then electronically excited by a time-delayed infrared control pulse of variable wavelength. Finally, a third (probe) pulse in the UV ionizes the clusters for detection. The lifetime of the excited (NH3)m-2NH4(3p)NH2 states is found to vary between 2.7 and 0.13 ps depending on cluster size and excitation energy. It increases drastically upon deuteration. The corresponding cluster size-dependent photoelectron spectra allow us to disentangle the underlying energetics of the excitation and ionization process and reveal additional processes, such as nonresonant ionization or dissociative ionization. The experimental findings suggest that the excited H-transfer ammonia complexes with m > 2 are deactivated by an internal conversion process back to the electronically lowest H-transfer state followed by fast dissociation. Received 22 September 2001 and Received in final form 31 January 2002  相似文献   

5.
Recent experimental data on the dipole plasmon in axial sodium clusters Na N + with 11 ≤ N ≤ 57 are analyzed within a self-consistent separable random-phase approximation (SRPA) based on the deformed Konh-Sham functional. Good agreement with the data is achieved. The calculations show that, while in light clusters plasmon properties (gross structure and width) are determined mainly by deformation splitting, in medium clusters with N τ 50 the Landau fragmentation becomes decisive. Moreover, in medium clusters shape isomers come to play with contributions to the plasmon comparable with the ground state one. As a result, commonly used methods of the experimental analysis of cluster deformation become useless and correct treatment of cluster shape requires microscopic calculations.  相似文献   

6.
Using Rydberg Electron Transfer Spectroscopy, formation of dipole-bound anion complexes of formamide, N-methylformamide, N,N-dimethylformamide and N-methylacetamide with water has been studied. Each neutral complex can exist with several configurations and the lowest energy structures have been identified through comparison between Density Functional Theory calculations of the neutrals and measured electron binding energies of the observed weakly-bound anions. Received 13 March 2002 Published online 13 September 2002  相似文献   

7.
We have studied experimentally the collisional charge transfer between a neutral atom and a multicharged metal-atom cluster. The charge transfer cross section measured for Na 31 + + + Cs is in the range of 400 ?2. The time-of-flight mass analysis of the singly charged collision products demonstrates that an energy of about 0.5 eV is deposited in the cluster fragment during the charge transfer collision. This effect can be interpreted as a charge transfer to an excited state of the metal cluster. The measured cross section for Na 31 + + + Cs is larger than the one for Na 31 + + Cs collisions. This difference between these two systems is due to the existence, for the first one, of a Coulombic repulsion term in the collision output channel. Received 24 October 2000  相似文献   

8.
Spectroscopic experiments have been performed, providing emission and excitation spectra of calcium atoms trapped on argon clusters of average size 2 000. The two experimental spectra fall in the vicinity of the calcium resonance line 1P 11S0 at 422.9 nm. The excitation spectrum consists in two bands located on each side of the resonance line of the free calcium. In addition, Monte Carlo calculations, coupled to Diatomics-In-Molecule potentials are employed to simulate the absorption spectrum of a single calcium atom in the environment of a large argon cluster of average size 300. The theoretical absorption spectrum confirms the existence of two bands, and shows that these bands are characteristic of a calcium atom located at the surface of the argon cluster and correspond to the excited 4p orbital of calcium either perpendicular or parallel to the cluster surface. The precise comparison between the shape of the absorption spectrum and that of the fluorescence excitation spectrum shows different intensity ratios. This could suggest the existence of a non adiabatic energy transfer that quenches partly the fluorescence of trapped calcium. Another explanation, although less likely, could be a substantial dependence of the calcium oscillator strength according to the alignment of the calcium excited orbital with respect to the cluster surface. The emission spectrum always shows a band in the red of the resonance line which is assigned to the emission of calcium remaining trapped on the cluster. When exciting the blue band of the excitation spectrum, the emission spectrum shows a second, weak, component that is assigned to calcium atoms ejected from the argon clusters, indicating a competition between ejection and solvation. Received 7 May 2002 Published online 1st October 2002 RID="a" ID="a"e-mail: jmm@drecam.saclay.cea.fr RID="b" ID="b"URA 2453 du CNRS RID="c" ID="c"UMR 5626 du CNRS  相似文献   

9.
Photoionization of rare gas clusters in the innervalence shell region has been investigated using threshold photoelectron and photoion spectrometers and synchrotron radiation. Two classes of states are found to play an important role: (A) valence states, correlated to dissociation limits involving an ion with a hole in its innervalence ns shell, (B) Rydberg states correlated to dissociation limits involving an ion with a hole in its outervalence np shell plus an excited neutral atom. In dimers, class A states are “bright”, that is, accessible by photoionization, and serve as an entrance step to form the class B “dark” states; this character fades as the size of the cluster increases. In the dimer, the “Mulliken” valence state is found to present a shallow potential well housing a few vibrational levels; it is predissociated by the class B Rydberg states. During the predissociation a remarkable energy transfer process is observed from the excited ion that loses its innershell electron to its neutral partner. Received: 10 February 1998 / Revised: 17 July 1998 / Accepted: 31 July 1998  相似文献   

10.
Intracluster electron transfer and oligomerization reaction were investigated by mass spectrometry of clusters of alkali metal atom (M) with acrylonitrile (AN; CH2=CHCN). In the photoionization mass spectra of M(AN)n, magic numbers were clearly observed at n = 3k (k = 1-4 for M = Na and K, k = 1 for M = Li). The results of photodissociation of neutral K(AN)n indicate that the n = 3 cluster has an anomalous stability relative to other sizes of clusters. The C=C bond in vinyl molecules is also found to be necessary to form the magic numbers by measuring the photoionization mass spectrum of K atom with propionitrile. These results strongly support the intracluster anionic oligomerization reaction initiated by electron transfer from the alkali atom. The quantum chemical calculations have revealed that the evaporation induced by excess energy generated by intracluster oligomerization is important to form the magic numbers in the present clusters. Received 29 November 2000  相似文献   

11.
Optical properties of mixed clusters (AuxAg 1 - x ) n and (NixAg 1 - x ) n , produced by laser vaporization and embedded in an alumina matrix, are reported. The size effects are investigated for different concentrations (x = 0.25, 0.5 and 0.75) in the diameter range 2-4 nm. For alloyed clusters (AuxAg 1 - x ) n of a given size an almost linear evolution of the surface plasmon frequency ω s with the concentration is observed (between those of pure gold and pure silver clusters). Moreover the blue-shift and the damping of the resonance with decreasing size is all the more important as the gold concentration in the particles increases. Such results are in agreement with theoretical calculations carried out in the frame of the time-dependent local-density-approximation (TDLDA) including an inner skin of ineffective screening and the porosity of the matrix. The optical response of (NixAg 1 - x ) n clusters exhibits a surface plasmon resonance in the same spectral range as the one observed for pure silver clusters, but considerably damped and broadened. For a given mean cluster size 3.0 nm, a blue-shift of the resonance is observed when increasing the nickel concentration (between x = 0.25 and x = 0.75). The results are in good qualitative agreement with classical predictions in the dipolar approximation, assuming a core-shell geometry. Received 21 November 2000  相似文献   

12.
The interaction of large ammonia and water clusters in the size range from <n> = 10 to 3 400 with electrons is investigated in a reflectron time-of-flight mass spectrometer. The clusters are generated in adiabatic expansions through conical nozzles and are nearly fragmentation free detected by single photon ionization after they have been doped by one sodium atom. For ammonia also the (1+1) resonance enhanced two photon ionization through the state with v = 6 operates similarly. In this way reliable size distributions of the neutral clusters are obtained which are analyzed in terms of a modified scaling law of the Hagena type [Surf. Sci. 106, 101 (1981)]. In contrast, using electron impact ionization, the clusters are strongly fragmented when varying the electron energy between 150 and 1 500 eV. The number of evaporated molecules depends on the cluster size and the energy dependence follows that of the stopping power of the solid material. Therefore we attribute the operating mechanism to that which is also responsible for the electronic sputtering of solid matter. The yields, however, are orders of magnitude larger for clusters than for the solid. This result is a consequence of the finite dimensions of the clusters which cannot accommodate the released energy. Received 21 November 2001  相似文献   

13.
The ionic and electronic structure of (Al2O3)n(Ox) clusters with n 16 and x = 0, 1, 2 is studied by means of first principles density functional calculations, norm-conserving pseudopotentials and a numerical atomic basis set. The equilibrium geometries have been determined by total energy minimization, starting with several initial geometries for each cluster size. The trends obtained for the atomic arrangements (structural isomers, coordination numbers, disordered versus ordered structures, etc.) and the electronic properties (binding energies, Homo-Lumo gap and dipole moments) are discussed. For most of the oxidized clusters studied here we find that the Homo-Lumo gap and the magnitude of dipole moment of isomeric species can vary drastically.  相似文献   

14.
We explore the way free particles produced by dissociating “particle-hole pairs” on a surface-melted cluster can be transferred to a second, nearby surface-melted cluster. This mass transport is based on an inter-cluster direct transfer mechanism of the particles. We found that in this particular case one cluster may grow at the expense of another, obeying a temporal power law with the exponent 1/2 for the average radius (Rt 1/2). The change from the expected universal power law (Rt 1/3) is a consequence of the proximity relation between these two clusters which lead to enhance the effective transport rates. Received 4 December 2000  相似文献   

15.
Ab initio Molecular Dynamics (MD) method, based on density functional theory (DFT) with planewaves and pseudopotentials, was used to study the stability and internal motion in silver cluster Agn, with n =4-6. Calculations on the neutral, cationic and anionic silver dimer Ag2 show that the bond distance and vibrational frequency calculated by DFT are of good quality. Simulations of Ag4, Ag5, and Ag6 in canonical ensemble reveal distinct characteristics and isomerization paths for each cluster. At a temperature of 800 K, an Ag4 has no definite structure due to internal motion, while for Ag5 and Ag6the clusters maintain the planar structure, with atomic rearrangement observed for Ag5 but not for Ag6. At a temperature of 200 K, Ag4 can exist in two planar structures whilst Ag5 is found to be stable only in the planar form. In contrast Ag6 is stable in both planar trigonal and 3D pentagonal structures. Micro-canonical MD simulation was performed for all three clusters to obtain the vibrational density of states (DOS). Received 5 May 1999 and Received in final form 20 August 1999  相似文献   

16.
Theoretical studies of the photoabsorption spectra of clusters (n =2-6, 13) have been carried out using a linear combination of atomic orbitals molecular-orbital approach within a density functional scheme and a first-order perturbation approach. An analysis of the electronic states based on an angular-momentum decomposition around the center of mass of the cluster has been used to label the various transitions. It is shown that the spectra change significantly with size and are sensitive to the geometrical arrangement. They can be used to identify the isomers. Received: 2 June 1998 / Received in final form: 23 October 1998  相似文献   

17.
We report on the formation and detection of a compressed fluid phase of Xe clusters in as- implanted Si, at room temperature. The simultaneous structural characterization of the Xe clusters and of the Si matrix was performed by X-ray diffraction at grazing incidence coupled with two-dimensional detection; in both cases, the nearest-neighbor distance and the coordination were obtained. In order to investigate the early stage of the atomic inclusion and the cluster segregation, the average compression and size of Xe fluid clusters within the amorphous Si matrix were explained within the simple Hard Sphere model. Received 4 September 2000 and Received in final form 13 December 2000  相似文献   

18.
A beam of Pb clusters is produced with the inert gas aggregation method and probed by electron diffraction. Analysis of the diffraction patterns indicates that average cluster size can vary between 3 and 7 nm, according to nucleation conditions. The diffraction patterns from beams with larger average cluster size are very similar to patterns calculated from model decahedron clusters, while those for smaller cluster size do not appear to have simple geometrical face-centred cubic, decahedral, or icosahedral structure. Received 30 November 2000  相似文献   

19.
Large-scale molecular dynamics simulations with high acceleration energy on a diamond surface were performed in order to investigate the surface erosion process. Accelerated argon or CO2 clusters (∼960 atoms, 100 keV/cluster) impacted on the (111) surface of diamond which consisted of more than 1,000,000 carbon atoms. A typical hemispherical crater appeared about 0.7 ps after the impact, and two or three-layered shockwaves were formed and propagated to certain directions, but the crater was immediately filled up with the fluidized hot carbon material due to the collective elastic recovery before the reflection of the shockwave. The impact energy of the cluster was at first transferred mainly as kinetic energy of the diamond surface in a short time, and the potential energy was activated later. The activated carbon and oxygen atoms from the impact cluster stimulated the evaporation from the diamond surface for the CO2 cluster impact while the evaporation seemed to be suppressed by the argon atoms themselves for the argon cluster impact. Received 22 November 2000  相似文献   

20.
We have studied the atomic structure and the electronic properties of Ban clusters by the ab initio molecular dynamics method. We find that a structural transition to the bulk-like structure begins at Ba9 cluster, and the structures of the clusters are transferred to be icosahedral-like around n = 13. The relatively high stability for Ba4, Ba10 and Ba13 clusters are observed. Received 1st December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号