首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We report on the interaction of carbon monoxide with cationic gold clusters in the gas phase. Successive adsorption of CO molecules on the Au(n)(+) clusters proceeds until a cluster size specific saturation coverage is reached. Structural information for the bare gold clusters is obtained by comparing the saturation stoichiometry with the number of available equivalent sites presented by candidate structures of Au(n)(+). Our findings are in agreement with the planar structures of the Au(n)(+) cluster cations with n < or = 7 that are suggested by ion mobility experiments [Gilb, S.; Weis, P.; Furche, F.; Ahlrichs, R.; Kappes, M. M. J. Chem. Phys. 2001, 116, 4094]. By inference we also establish the structure of the saturated Au(n)(CO)(m)(+) complexes. In certain cases we find evidence suggesting that successive adsorption of CO can distort the metal cluster framework. In addition, the vibrational spectra of the Au(n)(CO)(m)(+) complexes in both the CO stretching region and in the region of the Au-C stretch and the Au-C-O bend are measured using infrared photodepletion spectroscopy. The spectra further aid in the structure determination of Au(n)(+), provide information on the structure of the Au(n)(+)-CO complexes, and can be compared with spectra of CO adsorbates on deposited clusters or surfaces.  相似文献   

2.
The gas phase reactions of carbon monoxide with small mass-selected clusters of palladium, Pd(x)(+) (x = 2-7), and their oxides, Pd(x)O(+) (x = 2-7) and Pd(x)O(2)(+) (x = 4-6), have been investigated in a radio frequency ion trap operated under multi-collision conditions. The bare palladium clusters were found to readily adsorb CO yielding a highly size dependent product pattern. Most interestingly, the reactions of the pre-oxidized palladium clusters with CO lead to very similar product distributions of Pd(x)(CO)(z)(+) complexes as in the case of the corresponding pure Pd(x)(+) clusters. Consequently, it has been concluded that the investigated palladium oxide clusters efficiently oxidize CO under formation of the bare clusters, which further adsorb CO molecules yielding the previously observed Pd(x)(CO)(z)(+) product complex distributions. This CO combustion reaction has been observed even at temperatures as low as 100 K. However, for Pd(2)O(+), Pd(6)O(+), Pd(6)O(2)(+), and Pd(7)O(+) a competing reaction channel yielding palladium oxide carbonyls Pd(x)O(CO)(z)(+) could be detected. The latter adsorption reaction may even hamper the CO combustion under certain reaction conditions and indicates enhanced activation barriers involved in the CO oxidation and/or the CO(2) elimination process on these clusters.  相似文献   

3.
The electron ionization of helium droplets doped with methane clusters is investigated for the first time using high-resolution mass spectrometry. The dominant ion products ejected into the gas phase are the unprotonated (CH(4))(n)(+) cluster ions along with the protonated ions, CH(5)(+)(CH(4))(n-1). The mass spectra show clear evidence for magic numbers, which are broadly consistent with icosahedral shell closings. However, unusual features were observed, including different magic numbers for CH(5)(+)(CH(4))(n-1) (n=55, 148) when compared to (CH(4))(n)(+) (n=54, 147). Possible interpretations for some of these differences are proposed. Products of the type [C(2)H(x)(CH(4))(n)](+), which result from ion-molecule chemistry, are also observed and these too show clear magic number features. Finally, we report the first observation of (CH(4))(n)(2+) dications from methane clusters. The threshold for dication survival occurs at n≥70 and is in good agreement with a liquid droplet model for fission of multiply charged ions. Furthermore, we present evidence showing that these dications are formed by an unusual two-step mechanism which is initiated by charge transfer to generate a monocation and is then followed by Penning ionization to generate a dication.  相似文献   

4.
New particle formation in the atmosphere is initiated by nucleation of gas-phase species. The small molecular clusters that act as seeds for new particles are stabilized by the incorporation of an ion. Ion-induced nucleation of molecular cluster ions containing sulfuric acid generates new particles in the background troposphere. The addition of a proton-accepting species to sulfuric acid cluster ions can further stabilize them and may promote nucleation under a wider range of conditions. To understand and accurately predict atmospheric nucleation, the stabilities of each molecular cluster within a chemical family must be known. We present the first comprehensive measurements of the ammonia-sulfuric acid positive ion cluster system NH(4)(+)(NH(3))(n)(H(2)SO(4))(s). Enthalpies and entropies of individual growth steps within this system were measured using either an ion flow reactor-mass spectrometer system under equilibrium conditions or by thermal decomposition of clusters in an ion trap mass spectrometer. Low level ab initio structural calculations provided inputs to a master equation model to determine bond energies from thermal decomposition measurements. Optimized ab initio structures for clusters up through n = 3, s = 3 are reported. Upon addition of ammonia and sulfuric acid pairs, internal proton transfer generates multiple NH(4)(+) and HSO(4)(-) ions within the clusters. These multiple-ion structures are up to 50 kcal mol(-1) more stable than corresponding isomers that retain neutral NH(3) and H(2)SO(4) species. The lowest energy n = s clusters are composed entirely of ions. The addition of acid-base pairs to the core NH(4)(+) ion generates nanocrystals that begin to resemble the ammonium bisulfate bulk crystal starting with the smallest n = s cluster, NH(4)(+)(NH(3))(1)(H(2)SO(4))(1). In the absence of water, this cluster ion system nucleates spontaneously for conditions that encompass most of the free troposphere.  相似文献   

5.
Condensation between preformed Ni-Pt and Pt carbonyl clusters leads to the new [H(6-n)Ni(24)Pt(17)(CO)(46)](n-)(n= 5, 6) and the substitutionally Ni/Pt disordered [Ni(24)(Ni(12-x)Pt(x))Pt(20)(CO)(56)](6-) (x = 4) carbonyl clusters, the latter of which represents the highest nuclearity homoleptic carbonyl cluster anion so far reported.  相似文献   

6.
The ground-state structures of neutral, cationic, and anionic phosphorus clusters P(n), P(n)(+), and P(n)(-) (n = 3-15) have been calculated using the B3LYP/6-311+G* density functional method. The P(n)(+) and P(n)(-) (n = 3-15) clusters with odd n were found to be more stable than those with even n, and we provide a satisfactory explanation for such trends based on concepts of energy difference, ionization potential, electron affinity, and incremental binding energy. The result of odd/even alternations is in good accord with the relative intensities of cationic and anionic phosphorus clusters observed in mass spectrometric studies.  相似文献   

7.
Reaction between the cluster salts [(eta(5)-Cp')(3)M(3)S(4)][pts] (M = Mo, W; Cp' = methylcyclopentadienyl; pts = p-toluenesulfonate) and [Co(2)(CO)(8)] yielded the electroneutral clusters [(eta(5)-Cp')(3)M(3)S(4)Co(CO)]. The molecular structure of [(eta(5)-Cp')(3)W(3)S(4)Co(CO)] was determined by single-crystal X-ray diffraction methods. The unprecedented 60 electron W(3)S(4)Co cluster completes a homologous series of heterobimetallic clusters, [(eta(5)-Cp')(3)M(3)S(4)Co(CO)] (M = Cr, Mo, W), containing a cubane-like core motif.  相似文献   

8.
A systematically varied series of tetrahedral clusters involving ligand and core metal variation has been examined using crystallography, Raman spectroscopy, cyclic voltammetry, UV-vis-NIR and IR spectroelectrochemistry, and approximate density functional theory, to assess cluster rearrangement to accommodate steric crowding, the utility of metal-metal stretching vibrations in mixed-metal cluster characterization, and the possibility of tuning cluster electronic structure by systematic modification of composition, and to identify cluster species resultant upon electrochemical oxidation or reduction. The 60-electron tetrahedral clusters MIr(3)(CO)(11-x)(PMe(3))(x)(eta(5)-Cp) [M = Mo, x = 0, Cp = C(5)H(4)Me (5), C(5)HMe(4) (6), C(5)Me(5) (7); M = W, Cp = C(5)H(4)Me, x = 1 (13), x = 2 (14)] and M(2)Ir(2)(CO)(10-x)(PMe(3))(x)(eta(5)-Cp) [M = Mo, x = 0, Cp = C(5)H(4)Me (8), C(5)HMe(4) (9), C(5)Me(5) (10); M = W, Cp = C(5)H(4)Me, x = 1 (15), x = 2 (16)] have been prepared. Structural studies of 7, 10, and 13 have been undertaken; these clusters are among the most sterically encumbered, compensating by core bond lengthening and unsymmetrical carbonyl dispositions (semi-bridging, semi-face-capping). Raman spectra for 5, 8, WIr(3)(CO)(11)(eta(5)-C(5)H(4)Me) (11), and W(2)Ir(2)(CO)(10)(eta(5)-C(5)H(4)Me)(2) (12), together with the spectrum of Ir(4)(CO)(12), have been obtained, the first Raman spectra for mixed-metal clusters. Minimal mode-mixing permits correlation between A(1) frequencies and cluster core bond strength, frequencies for the A(1) breathing mode decreasing on progressive group 6 metal incorporation, and consistent with the trend in metal-metal distances [Ir-Ir < M-Ir < M-M]. Cyclic voltammetric scans for 5-15, MoIr(3)(CO)(11)(eta(5)-C(5)H(5)) (1), and Mo(2)Ir(2)(CO)(10)(eta(5)-C(5)H(5))(2) (3) have been collected. The [MIr(3)] clusters show irreversible one-electron reduction at potentials which become negative on cyclopentadienyl alkyl introduction, replacement of molybdenum by tungsten, and replacement of carbonyl by phosphine. These clusters show two irreversible one-electron oxidation processes, the easier of which tracks with the above structural modifications; a third irreversible oxidation process is accessible for the bis-phosphine cluster 14. The [M(2)Ir(2)] clusters show irreversible two-electron reduction processes; the tungsten-containing clusters and phosphine-containing clusters are again more difficult to reduce than their molybdenum-containing or carbonyl-containing analogues. These clusters show two one-electron oxidation processes, the easier of which is reversible/quasi-reversible, and the more difficult of which is irreversible; the former occur at potentials which increase on cyclopentadienyl alkyl removal, replacement of tungsten by molybdenum, and replacement of phosphine by carbonyl. The reversible one-electron oxidation of 12 has been probed by UV-vis-NIR and IR spectroelectrochemistry. The former reveals that 12(+) has a low-energy band at 8000 cm(-1), a spectrally transparent region for 12, and the latter reveals that 12(+) exists in solution with an all-terminal carbonyl geometry, in contrast to 12 for which an isomer with bridging carbonyls is apparent in solution. Approximate density functional calculations (including ZORA scalar relativistic corrections) have been undertaken on the various charge states of W(2)Ir(2)(CO)(10)(eta(5)-C(5)H(5))(2) (4). The calculations suggest that two-electron reduction is accompanied by W-W cleavage, whereas one-electron oxidation proceeds with retention of the tetrahedral core geometry. The calculations also suggest that the low-energy NIR band of 12(+) arises from a sigma(W-W) --> sigma*(W-W) transition.  相似文献   

9.
A new class of Mo/Fe/S clusters with the MoFe(3)S(3) core has been synthesized in attempts to model the FeMo-cofactor in nitrogenase. These clusters are obtained in reactions of the (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et (I), (n)Pr (II)] clusters with CO. The new clusters include those preliminarily reported: (Cl(4)-cat)MoFe(3)S(3)(PEt(3))(2)(CO)(6) (III), (Cl(4)-cat)(O)MoFe(3)S(3)(PEt(3))(3)(CO)(5) (IV), (Cl(4)-cat)(Pyr)MoFe(3)S(3)(PEt(3))(2)(CO)(6) (VI), and (Cl(4)-cat)(Pyr)MoFe(3)S(3)(P(n)Pr(3))(3)(CO)(4) (VIII). In addition the new (Cl(4)-cat)(O)MoFe(3)S(3)(P(n)Pr(3))(3)(CO)(5) cluster (IVa), the (Cl(4)-cat)(O)MoFe(3)S(3)(PEt(3))(2)(CO)(6)cluster (V), the (Cl(4)-cat)(O)MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (Va), the (Cl(4)-cat)(Pyr)MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (VIa), and the (Cl(4)-cat)(P(n)Pr(3))MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (VII) also are reported. Clusters III-VIII have been structurally and spectroscopically characterized. EPR, zero-field (57)Fe-M?ssbauer spectroscopic characterizations, and magnetic susceptibility measurements have been used for a tentative assignment of the electronic and oxidation states of the MoFe(3)S(3) sulfur-voided cuboidal clusters. A structural comparison of the clusters with the MoFe(3)S(3) subunit of the FeMo-cofactor has led to the suggestion that the storage of reducing equivalents into M-M bonds, and their use in the reduction of substrates, may occur with the FeMo-cofactor, which also appears to have M-M bonding. On the basis of this argument, a possible N(2)-binding and reduction mechanism on the FeMoco-cofactor is proposed.  相似文献   

10.
Photodissociation spectra were determined for Au(m)(+) . Ar(n) (m=7; n=0-3 and m=8,9; n=0,1) in the photon energy range of 2.14-3.02 eV. Experimental data were compared with predictions of dipole allowed transitions using time-dependent density functional theory (TDDFT) as applied to cluster structures from both DFT (B3-LYP functional) and ab initio calculations at the MP2 level. Argon adduct formation does not significantly perturb the bare metal cluster core structure, but it does change the metal cluster spectrum for highly symmetric cluster structures. The photodissociation spectra are consistent with a transition from planar to three-dimensional gold cluster core geometries between m=7 and m=8 for both n=0 and 1. TDDFT predictions for favored isomers describe experimental absorption features to within +/-0.25 eV. We also discuss size-dependent trends in TDDFT transition energies for the lowest energy two- and three-dimensional structures of Au(m)(+)(m=3-9).  相似文献   

11.
New organometallic clusters with the MFe2(mu3-S)2 core (M = Mo or Fe) have been synthesized from inorganic [MoFe3S4] or [Fe4S4] clusters under high pressure CO. The reaction of (Cl4-cat)2Mo2Fe6S8(PR3)6[R = Et, (n)Pr] with high pressure CO produced the crystalline [MoFe2S2]4+ clusters, (Cl4-cat)Mo(O)Fe2S2(CO)(n)(PR3)6-n[n= 4, Et =I, (n)Pr =II; n = 5, Et =III] after flash column chromatography. The similar [MoFe2S2]4+ cluster, (Cl4-cat)2MoFe2S2(CO)2(depe)(2)(IV), also has been achieved by the reactions of (Cl4-cat)MoFe3S3(CO)6(PEt3)2 with depe by reductive decoupling of the cluster. For the [Fe3(mu3-S)2]4+ cluster, [Fe4S4(PcHex3)4](BPh4) was reacted with high pressure CO to produce a new Fe3S2(CO)7(PcHex)(2)(V) compound. These reactions generalized the preparation of organometallic compounds from inorganic clusters. All the compounds have been characterized by single crystal X-ray crystallography. A possible reaction pathway for the synthesis of the MFe2(mu3-S) clusters (M = Mo or Fe) has also been suggested.  相似文献   

12.
The reactivity of [HMCo3(CO)12] and [Et4N][MCo3(CO)12] (M = Fe, Ru) toward phosphine selenides such as Ph3PSe, Ph2P(Se)CH2PPh2, Ph2(2-C5H4N)PSe, Ph2(2-C4H3S)PSe, and Ph2[(2-C5H4N)(2-C4H2S)]PSe has been studied with the aim to obtain new selenido-carbonyl bimetallic clusters. The reactions of the hydrido clusters give two main classes of products: (i) triangular clusters with a mu3-Se capping ligand of the type [MCo2(mu3-Se)(CO)(9-x)L(y)] resulting from the selenium transfer (x = y = 1, 2, with L = monodentate ligand; x = 2, 4, and y = 1, 2, with L = bidentate ligand) (M = Fe, Ru) and (ii) tetranuclear clusters of the type [HMCo3(CO)12xL(y)] obtained by simple substitution of axial, Co-bound carbonyl groups by the deselenized phosphine ligand. The crystal structures of [HRuCo3(CO)7(mu-CO)3(mu-dppy)] (1), [MCo2(mu3-Se)(CO)7(mu-dppy)] (M = Fe (16) or Ru (2)), and [RuCo2(mu3-Se)(CO)7(mu-dppm)] (12) are reported [dppy = Ph2(2-C5H4N)P, dppm = Ph2PCH2PPh2]. Clusters 2, 12, and 16 are the first examples of trinuclear bimetallic selenido clusters substituted by phosphines. Their core consists of metal triangles capped by a mu3-selenium atom with the bidentate ligand bridging two metals in equatorial positions. The core of cluster 1 consists of a RuCo3 tetrahedron, each Co-Co bond being bridged by a carbonyl group and one further bridged by a dppy ligand. The coordination of dppy in a pseudoaxial position causes the migration of the hydride ligand to the Ru(mu-H)Co edge. In contrast to the reactions of the hydrido clusters, those with the anionic clusters [MCo3(CO)12]- do not lead to Se transfer from phosphorus to the cluster but only to CO substitution by the deselenized phosphine.  相似文献   

13.
We present joint theoretical and experimental results which provide evidence for the selectivity of V(x)O(y)(+) clusters in reactions toward ethylene due to the charge and different oxidation states of vanadium for different cluster sizes. Density functional calculations were performed on the reactions between V(x)O(y)(+) and ethylene, allowing us to identify the structure-reactivity relationship and to corroborate the experimental results obtained by Castleman and co-workers (Zemski, K. A.; Justes, D. R.; Castleman, A. W., Jr. J. Phys. Chem. A 2001, 105, 10237). The lowest-energy structures for the V(2)O(2)(-)(6)(+) and V(4)O(8)(-)(10)(+) clusters and the V(2)O(3)(-)(6)(+)-C(2)H(4) and V(4)O(10)(+)-C(2)H(4) complexes, as well as the energetics for reactions between ethylene and V(2)O(4)(-)(6)(+) and V(4)O(10)(+) are presented here. The oxygen transfer reaction pathway was determined to be the most energetically favorable one available to V(2)O(5)(+) and V(4)O(10)(+) via a radical-cation mechanism.The association and replacement reaction pathways were found to be the optimal channels for V(2)O(4)(+) and V(2)O(6)(+), respectively. These results are in agreement with the experimental results reported previously. Experiments were also conducted for the reactions between V(2)O(5)(+) and ethylene to include an energetic analysis at increasing pressures. It was found that the addition of energy depleted the production of V(2)O(4)(+), confirming that a more involved reaction rather than a collisional process is responsible for the observed phenomenon. In this contribution we show that investigation of reactions involving gas-phase cationic vanadium oxide clusters with small hydrocarbons is suitable for the identification of reactive centers responsible for selectivity in heterogeneous catalysis.  相似文献   

14.
Yttrium- and lanthanum-carbide cluster cations YC(n)(+) and LaC(n)(+) (n = 2, 4, and 6) are generated by laser ablation of carbonaceous material containing Y(2)O(3) or La(2)O(3). YC(2)(+), YC(4)(+), LaC(2)(+), LaC(4)(+), and LaC(6)(+) are selected to undergo gas-phase ion-molecule reactions with benzene and cyclohexane. The FTICR mass spectrometry study shows that the reactions of YC(2)(+) and LaC(2)(+) with benzene produce three main series of cluster ions. They are in the form of M(C(6)H(4))(C(6)H(6))(n)(+), M(C(8)H(4))(C(6)H(6))(n)(+), and M(C(8)H(6))(C(6)H(6))(m)(+) (M = Y and La; n = 0-3; m = 0-2). For YC(4)(+), LaC(4)(+), and LaC(6)(+), benzene addition products in the form of MC(n)(C(6)H(6))(m)(+) (M = Y and La; n = 4, 6; m = 1, 2) are observed. In the reaction with cyclohexane, all the metal-carbide cluster ions are observed to form metal-benzene complexes M(C(6)H(6))(n)(+) (M = Y and La; n= 1-3). Collision-induced-dissociation experiments were performed on the major reaction product ions, and the different levels of energy required for the fragmentation suggest that both covalent bonding and weak electrostatic interaction exist in these organometallic complexes. Several major product ions were calculated using DFT theory, and their ground-state geometries and energies were obtained.  相似文献   

15.
Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5) x 10(4) s(-1) for cluster sizes of 5< or =n< or =16. Mixed CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n+ cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.  相似文献   

16.
Positive and negatively charged ammonia clusters produced by the impact of (252)Cf fission fragments (FF) on an NH(3) ice target have been examined theoretical and experimentally. The ammonia clusters generated by (252)Cf FF show an exponential dependence of the cluster population on its mass, and the desorption yields for the positive (NH(3))(n)NH(4)(+) clusters are 1 order of magnitude higher than those for the negative (NH(3))(n)NH(2)(-) clusters. The experimental population analysis of (NH(3))(n)NH(4)(+) (n = 0-18) and (NH(3))(n)NH(2)(-) (n = 0-8) cluster series show a special stability at n = 4 and 16 and n = 2, 4, and 6, respectively. DFT/B3LYP calculations of the (NH(3))(0)(-)(8)NH(4)(+) clusters show that the structures of the more stable conformers follow a clear pattern: each additional NH(3) group makes a new hydrogen bond with one of the hydrogen atoms of an NH(3) unit already bound to the NH(4)(+) core. For the (NH(3))(0)(-)(8)NH(2)(-) clusters, the DFT/B3LYP calculations show that, within the calculation error, the more stable conformers follow a clear pattern for n = 1-6: each additional NH(3) group makes a new hydrogen bond to the NH(2)(-) core. For n = 7 and 8, the additional NH(3) groups bind to other NH(3) groups, probably because of the saturation of the NH(2)(-) core. Similar results were obtained at the MP2 level of calculation. A stability analysis was performed using the commonly defined stability function E(n)(-)(1) + E(n)(+1) - 2E(n), where E is the total energy of the cluster, including the zero point correction energy (E = E(t) + ZPE). The trend on the relative stability of the clusters presents an excellent agreement with the distribution of experimental cluster abundances. Moreover, the stability analysis predicts that the (NH(3))(4)NH(4)(+) and the even negative clusters [(NH(3))(n)NH(2)(-), n = 2, 4, and 6] should be the most stable ones, in perfect agreement with the experimental results.  相似文献   

17.
Reactions of a dirhenium tetra(sulfido) complex [PPh(4)](2)[ReS(L)(mu-S)(2)ReS(L)] (L = S(2)C(2)(SiMe(3))(2)) with a series of group 8-11 metal complexes in MeCN at room temperature afforded either the cubane-type clusters [M(2)(ReL)(2)(mu(3)-S)(4)] (M = CpRu (2), PtMe(3), Cu(PPh(3)) (4); Cp = eta(5)-C(5)Me(5)) or the incomplete cubane-type clusters [M(ReL)(2)(mu(3)-S)(mu(2)-S)(3)] (M = (eta(6)-C(6)HMe(5))Ru (5), CpRh (6), CpIr (7)), depending on the nature of the metal complexes added. It has also been disclosed that the latter incomplete cubane-type clusters can serve as the good precursors to the trimetallic cubane-type clusters still poorly precedented. Thus, treatment of 5-7 with a range of metal complexes in THF at room temperature resulted in the formation of novel trimetallic cubane-type clusters, including the neutral clusters [[(eta(6)-C(6)HMe(5))Ru][W(CO)(3)](ReL)(2)(mu(3)-S)(4)], [(CpM)[W(CO)(3)](ReL)(2)(mu(3)-S)(4)] (M = Rh, Ir), [(Cp*Ir)[Mo(CO)(3)](ReL)(2)(mu(3)-S)(4)], [[(eta(6)-C(6)HMe(5))Ru][Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)], and [(Cp*Ir)[Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)] (13) along with the cationic clusters [(Cp*Ir)(CpRu)(ReL)(2)(mu(3)-S)(4)][PF(6)] (14) and [(Cp*Ir)[Rh(cod)](ReL)(2)(mu(3)-S)(4)][PF(6)] (cod = 1,5-cyclooctadiene). The X-ray analyses have been carried out for 2, 4, 7, 13, and the SbF(6) analogue of 14 (14') to confirm their bimetallic cubane-type, bimetallic incomplete cubane-type, or trimetallic cubane-type structures. Fluxional behavior of the incomplete cubane-type and trimetallic cubane-type clusters in solutions has been demonstrated by the variable-temperature (1)H NMR studies, which is ascribable to both the metal-metal bond migration in the cluster cores and the pseudorotation of the dithiolene ligand bonded to the square pyramidal Re centers, where the temperatures at which these processes proceed have been found to depend upon the nature of the metal centers included in the cluster cores.  相似文献   

18.
The reaction of [Cp(n) MCl(4-x) ] (M=V: n=2, x=2; M=Nb: n=1, x=0; Cp=η(5) -C(5) H(5) ) with LiBH(4) ?THF followed by thermolysis in the presence of dichalcogenide ligands E(2) R(2) (E=S, Te; R=2,6-(tBu)(2) -C(6) H(2) OH, Ph) and 2-mercaptobenzothiazole (C(7) H(5) NS(2) ) yielded dimetallaheteroboranes [{CpV(μ-TePh)}(2) (μ(3) -Te)BH?thf] (1), [(CpV)(2) (BH(3) S)(2) ] (2), [(CpNb)(2) B(4) H(10) S] (3), [(CpNb)(2) B(4) H(11) S(tBu)(2) C(6) H(2) OH] (4), and [(CpNb)(2) B(4) H(11) TePh] (5). In cluster 1, the V(2) BTe atoms define a tetrahedral framework in which the boron atom is linked to a THF molecule. Compound 2 can be described as a dimetallathiaborane that is built from two edge-fused V(2) BS tetrahedron clusters. Cluster 3 can be considered as an edge-fused cluster in which a trigonal-bipyramidal unit (Nb(2) B(2) S) has been fused with a tetrahedral core (Nb(2) B(2) ) by means of a common Nb(2) edge. In addition, thermolysis of an in-situ-generated intermediate that was produced from the reaction of [Cp(2) VCl(2) ] and LiBH(4) ?THF with excess BH(3) ?THF yielded oxavanadaborane [(CpV)(2) B(3) H(8) (μ(3) -OEt)] (6) and divanadaborane cluster [(CpV)(2) B(5) H(11) ] (7). Cluster 7 exhibits a nido geometry with C(2v) symmetry and it is isostructural with [(Cp*M)(2) B(5) H(9+n) ] (M=Cr, Mo, and W, n=0; M=Ta, n=2; Cp*=η(5) -C(5) Me(5) ). All of these new compounds have been characterized by (1) H?NMR, (11) B?NMR, and (13) C?NMR spectroscopy and elemental analysis and the structural types were established unequivocally by crystallographic analysis of compounds?1-4, 6, and 7.  相似文献   

19.
The reaction of the cluster salts [Cp(2*) Nb(CO)(2)](n)[Co(11)Te(7)(CO)(10)] (Cp*=C(5)Me(5); n=1, 2) with excess PMe(2)Ph gave the neutral, dark brown clusters [Co(11)Te(7)(CO)(6)(PMe(2)Ph)(4)] (5) and [Co(11)Te(7)(CO)(5)(PMe(2)Ph)(5)] (6) with 147 metal valence electrons. The new compounds were characterized by IR spectroscopy, elemental analyses, and mass spectrometry. The molecular structure of 6 was determined by X-ray crystallography. Like its precursor anion, it consists of a pentagonal-prismatic [Co(11)Te(7)] core, but with a ligand sphere composed of five CO and five PMe(2)Ph ligands. Detailed electrochemical studies of both reactions reveal that a stepwise substitution of CO ligands in the initial cluster anions takes place leading to intermediate [Co(11)Te(7)(CO)(10-m)(PMe(2)Ph)(m)](n-) ions (m=1-5; n=1, 2). Each of these intermediates is distinguished by at least one oxidation and two reduction waves, giving rise to a total of 21 redox couples and 27 electroactive species. The electron sponge character of the new compounds is particularly pronounced in 5, which exhibits charges n between +1 and -4 corresponding to metal valence electron counts of between 146 and 151.  相似文献   

20.
The clusters [Fe(6)S(8)(PEt(3))(6)](+,2+) have been shown by other investigators to be formed by the reaction of [Fe(OH(2))(6)](2+) and H(2)S, to contain face-capped octahedral Fe(6)S(8) cores, and to be components of the five-membered electron transfer series [Fe(6)S(8)(PEt(3))(6)](n)()(+) (n = 0-4) estalished electrochemically. We have prepared two additional series members. Reaction of [Fe(6)S(8)(PEt(3))(6)](2+) with iodine in dichloromethane affords [Fe(6)S(8)(PEt(3))(6)](3+), isolated as the perchlorate salt (48%). Reduction of [Fe(6)S(8)(PEt(3))(6)](2+) with Na(Ph(2)CO) in acetonitrile/THF produces the neutral cluster [Fe(6)S(8)(PEt(3))(6)] (65%). The structures of the four clusters with n = 0, 1+, 2+, 3+ were determined at 223 K. The compounds [Fe(6)S(8)(PEt(3))(6)](ClO(4))(3), [Fe(6)S(8)(PEt(3))(6)] crystallize in trigonal space group R&thremacr;c with a = 21.691(4), 16.951(4) ?, c = 23.235(6), 19.369(4) ?, and Z = 6, 3. The compounds [Fe(6)S(8)(PEt(3))(6)](BF(4))(2), [Fe(6)S(8)(PEt(3))(6)](BF(4)).2MeCN were obtained in monoclinic space groups P2(1)/c, C2/c with a = 11.673(3), 16.371(4) ?, b = 20.810(5), 16.796(4) ?, c = 12.438(4), 23.617(7) ?, beta = 96.10(2), 97.98(2) degrees, and Z = 2, 4. [Fe(6)S(8)(PEt(3))(6)](BPh(4))(2) occurred in trigonal space group P&onemacr; with a = 11.792(4) ?, b = 14.350(5) ?, c = 15.536(6) ?, alpha = 115.33(3) degrees, beta = 90.34(3) degrees, gamma = 104.49(3) degrees, and Z = 1. Changes in metric features across the series are slight but indicate increasing population of antibonding Fe(6)S(8) core orbitals upon reduction. Zero-field M?ssbauer spectra are consistent with this result, isomer shifts increasing by ca. 0.05 mm/s for each electron added, and indicate a delocalized electronic structure. Magnetic susceptibility measurements together with previously reported results established the ground states S = (3)/(2) (3+), 3 (2+), (7)/(2) (1+), 3 (0). The clusters [Fe(6)S(8)(PEt(3))(6)](n)()(+) possess the structural and electronic features requisite to multisequential electron transfer reactions. This work provides the first example of a cluster type isolated over four consecutive oxidation states. Note is also made of the significance of the [Fe(6)S(8)(PEt(3))(6)](n)()(+) cluster type in the development of iron-sulfur-phosphine cluster chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号