首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of manganese(III) porphyrin complexes with terminal oxidants, such as m-chloroperbenzoic acid, iodosylarenes, and H(2)O(2), produced high-valent manganese(V)-oxo porphyrins in the presence of base in organic solvents at room temperature. The manganese(V)-oxo porphyrins have been characterized with various spectroscopic techniques, including UV-vis, EPR, 1H and 19F NMR, resonance Raman, and X-ray absorption spectroscopy. The combined spectroscopic results indicate that the manganese(V)-oxo porphyrins are diamagnetic low-spin (S = 0) species with a longer, weaker Mn-O bond than in previously reported Mn(V)-oxo complexes of non-porphyrin ligands. This is indicative of double-bond character between the manganese(V) ion and the oxygen atom and may be attributed to the presence of a trans axial ligand. The [(Porp)Mn(V)=O](+) species are stable in the presence of base at room temperature. The stability of the intermediates is dependent on base concentration. In the absence of base, (Porp)Mn(IV)=O is generated instead of the [(Porp)Mn(V)=O](+) species. The stability of the [(Porp)Mn(V)=O](+) species also depends on the electronic nature of the porphyrin ligands: [(Porp)Mn(V)=O](+) complexes bearing electron-deficient porphyrin ligands are more stable than those bearing electron-rich porphyrins. Reactivity studies of manganese(V)-oxo porphyrins revealed that the intermediates are capable of oxygenating PPh(3) and thioanisoles, but not olefins and alkanes at room temperature. These results indicate that the oxidizing power of [(Porp)Mn(V)=O](+) is low in the presence of base. However, when the [(Porp)Mn(V)=O](+) complexes were associated with iodosylbenzene in the presence of olefins and alkanes, high yields of oxygenated products were obtained in the catalytic olefin epoxidation and alkane hydroxylation reactions. Mechanistic aspects, such as oxygen exchange between [(Porp)Mn(V)=16O](+) and H(2)(18)O, are also discussed.  相似文献   

2.
The intrinsic reactivity of a manganese(V)-oxo porphyrin complex, a typically fleeting intermediate in catalytic oxidation reactions in solution, has been elucidated in a study focused on its gas-phase ion-chemistry. The naked high-valent Mn(V)-oxo porphyrin intermediate 1 ([(tpfpp)Mn(V)O](+); tpfpp=meso-tetrakis(pentafluorophenyl)porphinato dianion), has been obtained by controlled treatment of [(tpfpp)Mn(III)]Cl (2-Cl) with iodosylbenzene in methanol, delivered in the gas phase by electrospray ionization and assayed by FT-ICR mass spectrometry. A direct kinetic study of the reaction with selected substrates, each containing a heteroatom X (X=S, N, P) including amines, sulfides, and phosphites, was thus performed. Ionic products arising from electron transfer (ET), hydride transfer (HT), oxygen-atom transfer (OAT), and formal addition (Add) may be observed, with a predominance of two-electron processes, whereas the product of hydrogen-atom transfer (HAT), [(tpfpp)Mn(IV)OH](+), is never detected. A thermochemical threshold for the formation of the product radical cation allows an evaluation of the electron-transfer ability of a Mn(V)-oxo complex, yielding a lower limit of 7.85 eV for the ionization energy of gaseous [(tpfpp)Mn(IV)O]. Linear free-energy analyses of the reactions of para-substituted N,N-dimethylanilines and thioanisoles indicate that a considerable amount of positive charge is developed on the heteroatom in the oxidation transition state. Substrates endowed with different heteroatoms, but similar ionization energy display a comparable reaction efficiency, consistent with a mechanism initiated by ET. For the first time, the kinetic acidity of putative hydroxo intermediates playing a role in catalytic oxidations, [(tpfpp)Fe(IV)OH](+) and [(tpfpp)Mn(IV)OH](+), has been investigated with selected reference bases, revealing a comparatively higher basicity for the ferryl, [(tpfpp)Fe(IV)O], with respect to the manganyl, [(tpfpp)Mn(IV)O], unit. Finally, the neat association reaction of 2 has been studied with various ligands showing that harder ligands are more strongly bound.  相似文献   

3.
A mononuclear non-heme manganese(IV)-oxo complex has been synthesized and characterized using various spectroscopic methods. The Mn(IV)-oxo complex shows high reactivity in oxidation reactions, such as C-H bond activation, oxidations of olefins, alcohols, sulfides, and aromatic compounds, and N-dealkylation. In C-H bond activation, the Mn(IV)-oxo complex can activate C-H bonds as strong as those in cyclohexane. It is proposed that C-H bond activation by the non-heme Mn(IV)-oxo complex does not occur via an oxygen-rebound mechanism. The electrophilic character of the non-heme Mn(IV)-oxo complex is demonstrated by a large negative ρ value of -4.4 in the oxidation of para-substituted thioanisoles.  相似文献   

4.
Two new terpyridine dimanganese oxo complexes [Mn(2)(III,IV)(mu-O)(2)(terpy)(2)(CF(3)CO(2))(2)](+) (3) and [Mn(2)(III,III)(mu-O)(terpy)(2)(CF(3)CO(2))(4)] (4) (terpy = 2,2':6,2' '-terpyridine) have been synthesized and their X-ray structures determined. In contrast to the corresponding mixed-valent aqua complex [Mn(2)(III,IV)(mu-O)(2)(terpy)(2)(H(2)O)(2)](3+) (1), the two Mn atoms in 3 are not crystallographically equivalent. The neutral binuclear monooxo manganese(III,III) complex 4 exhibits two crystallographic forms having cis and trans configurations. In the cis complex, the two CF(3)CO(2)(-) ligands on each manganese adopt a cis geometry to each other; one CF(3)CO(2)(-) is trans to the oxygen of the oxo bridge while the second is cis. In the trans complex, the two coordinated CF(3)CO(2)(-) have a trans geometry to each other and are cis to the oxo bridge. The electrochemical behavior of 3 in organic medium (CH(3)CN) shows that this complex could be oxidized into its corresponding stable manganese(IV,IV) species while its reduced form manganese(III,III) is very unstable and leads by a disproportionation process to Mn(II) and Mn(IV) complexes. Complex 4 is only stable in the solid state, and it disproportionates spontaneously in CH(3)CN solution into the mixed-valent complex 3 and the mononuclear complex [Mn(II)(terpy)(2)](2+) (2), thereby preventing the observation of its electrochemical behavior.  相似文献   

5.
A novel monomeric tetravalent manganese complex with the cross-bridged cyclam ligand 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (Me2EBC), [Mn(IV)(Me2EBC)(OH)2](PF6)2, was synthesized by oxidation of Mn(II)(Me2EBC)Cl2 with H2O2 in the presence of NH4PF6)in aqueous solution. The X-ray crystal structure determination of this manganese(IV) compound revealed that it contains two rare terminal hydroxo ligands. EPR studies in dry acetonitrile at 77 K show two broad resonances at g = 1.96 and 3.41, indicating that the manganese(IV) exists as a high-spin d3 species. Resonance Raman (rR) spectra of this manganese(IV) species reveal that the dihydroxy moiety, Mn(IV)(OH)2, is also the dominant species in aqueous solution (pH < 7). pH titration provides two pK(a) values, 6.86(4) and 10.0(1), associated with stepwise removal of the last two oxygen-bound protons from [Mn(IV)(Me2EBC)(OH)2](2+). The cyclic voltammetry of this manganese(IV) complex in dry acetonitrile at 298 K demonstrates two reversible redox processes at +0.756 and -0.696 V (versus SHE) for the Mn4+/Mn3+ and Mn3+/Mn2+ couples, respectively. This manganese(IV) complex is relatively stable in weak acidic aqueous solution but easily degrades in basic solution to manganese(III) derivatives with an 88 +/- 1% yield.  相似文献   

6.
The synthesis of efficient water-oxidation catalysts demands insight into the only known, naturally occurring water-oxidation catalyst, the oxygen-evolving complex (OEC) of photosystem II (PSII). Understanding the water oxidation mechanism requires knowledge of where and when substrate water binds to the OEC. Mn catalase in its Mn(III)-Mn(IV) state is a protein model of the OEC's S(2) state. From (17)O-labeled water exchanged into the di-μ-oxo di-Mn(III,IV) coordination sphere of Mn catalase, CW Q-band ENDOR spectroscopy revealed two distinctly different (17)O signals incorporated in distinctly different time regimes. First, a signal appearing after 2 h of (17)O exchange was detected with a 13.0 MHz hyperfine coupling. From similarity in the time scale of isotope incorporation and in the (17)O μ-oxo hyperfine coupling of the di-μ-oxo di-Mn(III,IV) bipyridine model (Usov, O. M.; Grigoryants, V. M.; Tagore, R.; Brudvig, G. W.; Scholes, C. P. J. Am. Chem. Soc. 2007, 129, 11886-11887), this signal was assigned to μ-oxo oxygen. EPR line broadening was obvious from this (17)O μ-oxo species. Earlier exchange proceeded on the minute or faster time scale into a non-μ-oxo position, from which (17)O ENDOR showed a smaller 3.8 MHz hyperfine coupling and possible quadrupole splittings, indicating a terminal water of Mn(III). Exchangeable proton/deuteron hyperfine couplings, consistent with terminal water ligation to Mn(III), also appeared. Q-band CW ENDOR from the S(2) state of the OEC was obtained following multihour (17)O exchange, which showed a (17)O hyperfine signal with a 11 MHz hyperfine coupling, tentatively assigned as μ-oxo-(17)O by resemblance to the μ-oxo signals from Mn catalase and the di-μ-oxo di-Mn(III,IV) bipyridine model.  相似文献   

7.
The manganese(V) imido complex [(TBP8Cz)Mn(V)(NMes)] (2) was synthesized from the Mn(III) complex [(TBP8Cz)Mn(III)] (1) and thermolysis of mesityl azide. An X-ray structure of 2 reveals a short Mn-N distance [1.595(4) A], consistent with the Mn-N triple bond expected for a manganese(V) imido species. This high-valent species is remarkably inert to one- and two-electron reductive processes such as NR group transfer to alkenes or H-atom abstraction from O-H bonds. Electrochemical studies support this lack of reactivity. In contrast, oxidation of 2 is easily accomplished by treatment with [(4-BrC6H4)3N]*+SbCl6, giving a pi-radical-cation complex.  相似文献   

8.
A series of five free-base corroles were metalated and brominated to form 10 manganese(III) corroles. Two of the free-base corroles and six manganese(III) corroles were analyzed by X-ray crystallography, including one complex that may be considered a transition-state analogue of oxygen atom transfer (OAT) from (oxo)manganese(V) to thioansisole. Oxidation by ozone allowed for isolation of the 10 corresponding (oxo)manganese(V) corroles, whose characterization by (1)H and (19)F NMR spectroscopy and electrochemistry revealed a low-spin and triply bound manganese-oxygen moiety. Mechanistic insight was obtained by investigating their reactivity regarding stoichiometric OAT to a series of p-thioanisoles, revealing a magnitude difference on the order of 5 between the β-pyrrole brominated (oxo)manganese(V) corroles relative to the nonbrominated analogues. The main conclusion is that the (oxo)manganese(V) corroles are legitimate OAT agents under conditions where proposed oxidant-coordinated reaction intermediates are irrelevant. Large negative Hammett ρ constants are obtained for the more reactive (oxo)manganese(V) corroles, consistent with expectation for such electrophilic species. The least reactive complexes display very little selectivity to the electron-richness of the sulfides, as well as a non-first-order dependence on the concentration of (oxo)manganese(V) corrole. This suggests that disproportionation of the original (oxo)manganese(V) corrole to (oxo)manganese(IV) and (oxo)manganese(VI) corroles, followed by substrate oxidation by the latter complex, gains importance when the direct OAT process becomes progressively less favorable.  相似文献   

9.
The syntheses and structural, spectral, and electrochemical characterization of the dioxo-bridged dinuclear Mn(III) complexes [LMn(mo-O)(2)MnL](ClO(4))(2), of the tripodal ligands tris(6-methyl-2-pyridylmethyl)amine (L(1)) and bis(6-methyl-2-pyridylmethyl)(2-(2-pyridyl)ethyl)amine (L(2)), and the Mn(II) complex of bis(2-(2-pyridyl)ethyl)(6-methyl-2-pyridylmethyl)amine (L(3)) are described. Addition of aqueous H(2)O(2) to methanol solutions of the Mn(II) complexes of L(1) and L(2) produced green solutions in a fast reaction from which subsequently precipitated brown solids of the dioxo-bridged dinuclear complexes 1 and 2, respectively, which have the general formula [LMn(III)(mu-O)(2)Mn(III)L](ClO(4))(2). Addition of 30% aqueous H(2)O(2) to the methanol solution of the Mn(II) complex of L(3) ([Mn(II)L(3)(CH(3)CN)(H(2)O)](ClO(4))(2) (3)) showed a very sluggish change gradually precipitating an insoluble black gummy solid, but no dioxo-bridged manganese complex is produced. By contrast, the Mn(II) complex of the ligand bis(2-(2-pyridyl)ethyl)(2-pyridylmethyl)amine (L(3a)) has been reported to react with aqueous H(2)O(2) to form the dioxo-bridged Mn(III)Mn(IV) complex. In cyclic voltammetric experiments in acetonitrile solution, complex 1 shows two reversible peaks at E(1/2) = 0.87 and 1.70 V (vs Ag/AgCl) assigned to the Mn(III)(2) <--> Mn(III)Mn(IV) and the Mn(III)Mn(IV) <--> Mn(IV)(2) processes, respectively. Complex 2 also shows two reversible peaks, one at E(1/2) = 0.78 V and a second peak at E(1/2) = 1.58 V (vs Ag/AgCl) assigned to the Mn(III)(2) <--> Mn(III)Mn(IV) and Mn(III)Mn(IV) <--> Mn(IV)(2) redox processes, respectively. These potentials are the highest so far observed for the dioxo-bridged dinuclear manganese complexes of the type of tripodal ligands used here. The bulk electrolytic oxidation of complexes 1 and 2, at a controlled anodic potential of 1.98 V (vs Ag/AgCl), produced the green Mn(IV)(2) complexes that have been spectrally characterized. The Mn(II) complex of L(3) shows a quasi reversible peak at an anodic potential of E(p,a) of 1.96 V (vs Ag/AgCl) assigned to the oxidation Mn(II) to Mn(III) complex. It is about 0.17 V higher than the E(p,a) of the Mn(II) complex of L(3a). The higher oxidation potential is attributable to the steric effect of the methyl substituent at the 6-position of the pyridyl donor of L(3).  相似文献   

10.
The structural and physicochemical properties of the manganese-corrolazine (Cz) complexes (TBP8Cz)Mn(V)O (1) and (TBP8Cz)Mn(III) (2) (TBP = p-tert-butylphenyl) have been determined. Recrystallization of 2 from toluene/MeOH resulted in the crystal structure of (TBP8Cz)Mn(III)(CH3OH) (2 x MeOH). The packing diagram of 2 x MeOH reveals hydrogen bonds between MeOH axial ligands and meso N atoms of adjacent molecules. Solution binding studies of 2 with different axial ligands (Cl-, Et3PO, and Ph3PO) reveal strong binding, corroborating the preference of the Mn(III) ion for a five-coordinate environment. High-frequency and field electron paramagnetic resonance (HFEPR) spectroscopy of solid 2 x MeOH shows that 2 x MeOH is best described as a high-spin (S = 2) Mn(III) complex with zero-field splitting parameters typical of corroles. Structural information on 1 was obtained through an X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) study and compared to XANES/EXAFS data for 2 x MeOH. The XANES data for 1 shows an intense pre-edge transition characteristic of a high-valent metal-oxo species, and a best fit of the EXAFS data gives a short Mn-O bond distance of 1.56 A, confirming the structure of the metal-oxo unit in 1. Detailed spectroelectrochemical studies of 1 and 2 were performed revealing multiple reversible redox processes for both complexes, including a relatively low potential for the Mn(V) --> Mn(IV) process in 1 (near 0.0 V vs saturated calomel reference electrode). Chemical reduction of 1 results in the formation of a Mn(III)Mn(IV)(mu-O) dimer as characterized by electron paramagnetic resonance spectroscopy.  相似文献   

11.
Corrole-manganese(V)-oxo intermediates were produced by laser flash photolysis of the corresponding corrole-manganese(IV) chlorate complexes, and the kinetics of their decay reactions in CH2Cl2 and their reactions with organic reductants were studied. The corrole ligands studied were 5,10,15-tris(pentafluorophenyl)corrole (H3TPFC), 5,10,15-triphenylcorrole (H3TPC), and 5,15-bis(pentafluorophenyl)-10-(p-methoxyphenyl)corrole (H3BPFMC). In self-decay reactions and in reactions with substrates, the order of reactivity of (Cor)Mn(V)(O) was TPC > BPFMC > TPFC, which is inverted from that expected based on the electron-demand of the ligands. The rates of reactions of (Cor)Mn(V)(O) were dependent on the concentration of the oxidant and other manganese species, with increasing concentrations of various manganese species resulting in decreasing rates of reactions, and the apparent rate constant for reaction of (TPFC)Mn(V)(O) with triphenylamine was found to display fractional order with respect to the manganese-oxo species. The kinetic results are consistent in part with a reaction model involving disproportionation of (Cor)Mn(V)(O) to give (Cor)Mn(IV) and (Cor)Mn(VI)(O) species, the latter of which is the active oxidant. Alternatively, the results are consistent with oxidation by (Cor)Mn(V)(O) which is reversibly sequestered in non-reactive complexes by various manganese species.  相似文献   

12.
Manganese silicalite-2 was synthesized at high pH using the molecular cluster Mn 12O 12(O 2CCH 3) 16 as a Mn source. The silicalite-2 (ZSM-11) materials were synthesized using 3,5-dimethyl- N, N-diethylpiperdinium hydroxide as a structure-directing agent to produce phase-pure ZSM-11 materials. No precipitation of manganese hydroxide was observed, and synthesis resulted in the incorporation of up to 2.5 mol % Mn into the silicalite-2 with direct substitution into the framework verified by the linear relationship between the unit cell volume and loading. The Mn is reduced to Mn (II) during hydrothermal synthesis and incorporated into the silicalite-2 framework during calcination at 500 degrees C. Further calcination at 750 degrees C does not affect the crystallinity but oxidizes essentially all of the Mn (II) to Mn (III) in the framework. The large difference in oxidation temperatures between the II and III oxidation states provides a means of producing relatively pure manganese(II) and manganese(III) silicalite-2 materials for applications such as catalysis.  相似文献   

13.
The electron-transfer and hydride-transfer properties of an isolated manganese(V)?oxo complex, (TBP8Cz)Mn(V)(O) (1) (TBP8Cz = octa-tert-butylphenylcorrolazinato) were determined by spectroscopic and kinetic methods. The manganese(V)?oxo complex 1 reacts rapidly with a series of ferrocene derivatives ([Fe(C5H4Me)2], [Fe(C5HMe4)2], and ([Fe(C5Me5)2] = Fc*) to give the direct formation of [(TBP8Cz)Mn(III)(OH)]? ([2-OH]?), a two-electron-reduced product. The stoichiometry of these electron-transfer reactions was found to be (Fc derivative)/1 = 2:1 by spectral titration. The rate constants of electron transfer from ferrocene derivatives to 1 at room temperature in benzonitrile were obtained, and the successful application of Marcus theory allowed for the determination of the reorganization energies (λ) of electron transfer. The λ values of electron transfer from the ferrocene derivatives to 1 are lower than those reported for a manganese(IV)?oxo porphyrin. The presumed one-electron-reduced intermediate, a Mn(IV) complex, was not observed during the reduction of 1. However, a Mn(IV) complex was successfully generated via one-electron oxidation of the Mn(III) precursor complex 2 to give [(TBP8Cz)Mn(IV)]+ (3). Complex 3 exhibits a characteristic absorption band at λ(max) = 722 nm and an EPR spectrum at 15 K with g(max)′ = 4.68, g(mid)′ = 3.28, and g(min)′ = 1.94, with well-resolved 55Mn hyperfine coupling, indicative of a d3 Mn(IV)S = 3/2 ground state. Although electron transfer from [Fe(C5H4Me)2] to 1 is endergonic (uphill), two-electron reduction of 1 is made possible in the presence of proton donors (e.g., CH3CO2H, CF3CH2OH, and CH3OH). In the case of CH3CO2H, saturation behavior for the rate constants of electron transfer (k(et)) versus acid concentration was observed, providing insight into the critical involvement of H+ in the mechanism of electron transfer. Complex 1 was also shown to be competent to oxidize a series of dihydronicotinamide adenine dinucleotide (NADH) analogues via formal hydride transfer to produce the corresponding NAD+ analogues and [2-OH]?. The logarithms of the observed second-order rate constants of hydride transfer (k(H)) from NADH analogues to 1 are linearly correlated with those of hydride transfer from the same series of NADH analogues to p-chloranil.  相似文献   

14.
The tetranuclear manganese complex [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) (1; terpy = 2,2':6',2″-terpyridine) gives catalytic water oxidation in aqueous solution, as determined by electrochemistry and GC-MS. Complex 1 also exhibits catalytic water oxidation when adsorbed on kaolin clay, with Ce(IV) as the primary oxidant. The redox intermediates of complex 1 adsorbed on kaolin clay upon addition of Ce(IV) have been characterized by using diffuse reflectance UV/visible and EPR spectroscopy. One of the products in the reaction on kaolin clay is Mn(III), as determined by parallel-mode EPR spectroscopic studies. When 1 is oxidized in aqueous solution with Ce(IV), the reaction intermediates are unstable and decompose to form Mn(II), detected by EPR spectroscopy, and MnO(2). DFT calculations show that the oxygen in the mono-μ-oxo bridge, rather than Mn(IV), is oxidized after an electron is removed from the Mn(IV,IV,IV,IV) tetramer. On the basis of the calculations, the formation of O(2) is proposed to occur by reaction of water with an electrophilic manganese-bound oxyl radical species, (?)O-Mn(2)(IV/IV), produced during the oxidation of the tetramer. This study demonstrates that [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) may be relevant for understanding the role of the Mn tetramer in photosystem II.  相似文献   

15.
The trinuclear manganese complex [Mn(3)O(4)(phen)(4)(H(2)O)(2)](NO(3))(4).2.5H(2)O, 1 (where, phen = 1,10-phenanthroline), has been synthesized by the Ce(IV) oxidation of a concentrated solution of manganese(II) acetate and phen in 1.6 N nitric acid. The complex crystallizes in the triclinic space group P&onemacr; with a = 10.700(2) ?, b = 12.643(3) ?, c = 20.509(4) ?, alpha = 78.37(3) degrees, beta = 83.12(3) degrees, gamma = 82.50(3) degrees, and Z = 2. The structure was solved by direct methods and refined by least-squares techniques to the conventional R (R(w)) factors of 0.055 (0.076) based on 4609 unique reflections with F(o) >/= 6.0sigma(F(o)). The structure of the cation consists of an oxo-bridged Mn(3)O(4)(4+) core, with the geometry of the manganese atoms being octahedral. The coordination polyhedron of one of the manganese atoms (Mn(1)) consists of two &mgr; oxo ligands and two pairs of nitrogen atoms of two phen moieties, whereas that of each of the remaining two manganese atoms consists of three &mgr;-oxo ligands, two nitrogen atoms of a phen moiety, and the oxygen atom of a water molecule. The complex represents the second example for water coordination to manganese(IV) centers in complexes with a Mn(3)O(4)(4+) core. Optical spectra in ligand buffer (pH 4.5) reveal complete conversion of the complex into a Mn(III)Mn(IV) species. The observed room-temperature (298 K) magnetic moment of 3.75 &mgr;(B) indicates the presence of strong antiferromagnetic coupling in the complex.  相似文献   

16.
Umile TP  Wang D  Groves JT 《Inorganic chemistry》2011,50(20):10353-10362
Chlorine dioxide, an industrially important biocide and bleach, is produced rapidly and efficiently from chlorite ion in the presence of water-soluble, manganese porphyrins and porphyrazines at neutral pH under mild conditions. The electron-deficient manganese(III) tetra-(N,N-dimethyl)imidazolium porphyrin (MnTDMImP), tetra-(N,N-dimethyl)benzimidazolium (MnTDMBImP) porphyrin, and manganese(III) tetra-N-methyl-2,3-pyridinoporphyrazine (MnTM23PyPz) were found to be the most efficient catalysts for this process. The more typical manganese tetra-4-N-methylpyridiumporphyrin (Mn-4-TMPyP) was much less effective. Rates for the best catalysts were in the range of 0.24-32 TO/s with MnTM23PyPz being the fastest. The kinetics of reactions of the various ClO(x) species (e.g., chlorite ion, hypochlorous acid, and chlorine dioxide) with authentic oxomanganese(IV) and dioxomanganese(V)MnTDMImP intermediates were studied by stopped-flow spectroscopy. Rate-limiting oxidation of the manganese(III) catalyst by chlorite ion via oxygen atom transfer is proposed to afford a trans-dioxomanganese(V) intermediate. Both trans-dioxomanganese(V)TDMImP and oxoaqua-manganese(IV)TDMImP oxidize chlorite ion by 1-electron, generating the product chlorine dioxide with bimolecular rate constants of 6.30 × 10(3) M(-1) s(-1) and 3.13 × 10(3) M(-1) s(-1), respectively, at pH 6.8. Chlorine dioxide was able to oxidize manganese(III)TDMImP to oxomanganese(IV) at a similar rate, establishing a redox steady-state equilibrium under turnover conditions. Hypochlorous acid (HOCl) produced during turnover was found to rapidly and reversibly react with manganese(III)TDMImP to give dioxoMn(V)TDMImP and chloride ion. The measured equilibrium constant for this reaction (K(eq) = 2.2 at pH 5.1) afforded a value for the oxoMn(V)/Mn(III) redox couple under catalytic conditions (E' = 1.35 V vs NHE). In subsequent processes, chlorine dioxide reacts with both oxomanganese(V) and oxomanganese(IV)TDMImP to afford chlorate ion. Kinetic simulations of the proposed mechanism using experimentally measured rate constants were in agreement with observed chlorine dioxide growth and decay curves, measured chlorate yields, and the oxoMn(IV)/Mn(III) redox potential (1.03 V vs NHE). This acid-free catalysis could form the basis for a new process to make ClO(2).  相似文献   

17.
The direct conversion of a Mn(III) complex [(TBP(8)Cz)Mn(III) (1)] to a Mn(V)-oxo complex [(TBP(8)Cz)Mn(V)(O) (2)] with O(2) and visible light is reported. Complex 1 is also shown to function as an active photocatalyst for the oxidation of PPh(3) to OPPh(3). Mechanistic studies indicate that the photogeneration of 2 does not involve singlet oxygen but rather likely occurs via a free-radical mechanism upon photoactivation of 1.  相似文献   

18.
The reaction between (TBP)8(Cz)Mn(III) (1) and the oxygen atom donors iodosylbenzene (PhIO) or p-cyanodimethylaniline-N-oxide (CDMANO) leads to the manganese(V)-oxo complex (TBP)8(Cz)Mn(V)O (2), which has been isolated and characterized previously. Under catalytic conditions with 1 as added catalyst and PhIO as oxidant, both sulfoxidation of PhSMe and epoxidation of cis-stilbene is observed, whereas with CDMANO no sulfoxidation takes place, suggesting that 2 is not the active oxidant. Examination of the independent reactivity of isolated 2 toward PhSMe and cis-stilbene supports this conclusion. A mechanism which relies on a novel type of oxidant involving Lewis acid activation of PhIO by the Mn(V)-oxo complex 2 accounts for these observations and is confirmed by 18O-labeling experiments.  相似文献   

19.
Porphyrin-manganese(V)-oxo and porphyrin-manganese(IV)-oxo species were produced in organic solvents by laser flash photolysis (LFP) of the corresponding porphyrin-manganese(III) perchlorate and chlorate complexes, respectively, permitting direct kinetic studies. The porphyrin systems studied were 5,10,15,20-tetraphenylporphyrin (TPP), 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TPFPP), and 5,10,15,20-tetrakis(4-methylpyridinium)porphyrin (TMPyP). The order of reactivity for (porphyrin)Mn(V)(O) derivatives in self-decay reactions in acetonitrile and in oxidations of substrates was (TPFPP) > (TMPyP) > (TPP). Representative rate constants for reaction of (TPFPP)Mn(V)(O) in acetonitrile are k = 6.1 x 10(5) M(-1) s(-1) for cis-stilbene and k = 1.4 x 10(5) M(-1) s(-1) for diphenylmethane, and the kinetic isotope effect in oxidation of ethylbenzene and ethylbenzene-d(10) is k(H)/k(D) = 2.3. Competitive oxidation reactions conducted under catalytic conditions display approximately the same relative rate constants as were found in the LFP studies of (porphyrin)Mn(V)(O) derivatives. The apparent rate constants for reactions of (porphyrin)Mn(IV)(O) species show inverted reactivity order with (TPFPP) < (TMPyP) < (TPP) in reactions with cis-stilbene, triphenylamine, and triphenylphosphine. The inverted reactivity results because (porphyrin)Mn(IV)(O) disproportionates to (porphyrin)Mn(III)X and (porphyrin)Mn(V)(O), which is the primary oxidant, and the equilibrium constants for disproportionation of (porphyrin)Mn(IV)(O) are in the order (TPFPP) < (TMPyP) < (TPP). The fast comproportionation reaction of (TPFPP)Mn(V)(O) with (TPFPP)Mn(III)Cl to give (TPFPP)Mn(IV)(O) (k = 5 x 10(8) M(-1) s(-1)) and disproportionation reaction of (TPP)Mn(IV)(O) to give (TPP)Mn(V)(O) and (TPP)Mn(III)X (k approximately 2.5 x 10(9) M(-1) s(-1)) were observed. The relative populations of (porphyrin)Mn(V)(O) and (porphyrin)Mn(IV)(O) were determined from the ratios of observed rate constants for self-decay reactions in acetonitrile and oxidation reactions of cis-stilbene by the two oxo derivatives, and apparent disproportionation equilibrium constants for the three systems in acetonitrile were estimated. A model for oxidations under catalytic conditions is presented.  相似文献   

20.
[formula: see text] The geometries and multiplicities of models of the manganese(III)-salen catalyst and the manganese(V)-oxo Intermediate in the Jacobsen epoxidation were explored with density functional theory (Becke3LYP). Mn(III) complexes are quintet ground states, while ligands influence whether quintet, triplet, or singlet states are lowest in energy for Mn(V)-oxo complexes. Geometries and multiplicities and their implications for stereoselectivity are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号