首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantitative method for measuring the shear force required to detach individual adhered bacteria using atomic force microscopy (AFM) was developed. By determining the total compression of the cantilever during cell detachment events, a more accurate means of calculating the applied lateral force necessary to remove individual cells was achieved compared to previous methods. In addition, a tunable assay for monitoring the dynamics of Pseudomonas aeruginosa and Staphylococcus aureus adhesion strength was employed. The accumulation of force measurements over time allowed for the characterization of adhesion strength kinetics. P. aeruginosa reinforced its adhesion to the surface at a rate 7-fold faster than for S. aureus; the average adhesion strength of P. aeruginosa was larger than that of S. aureus at corresponding time points. Adhered cells of the same species and strain demonstrated a range of adhesion forces that broadened with time, indicating that the change in adhesion strength does not proceed uniformly.  相似文献   

2.
It is well established that for successful photoinactivation (PI) of gram-negative bacteria a cationic photosensitizer is required. This requirement suggests a charge-dependent interaction between the photosensitizer and the gram-negative bacterium, which may be influenced by the presence of ions in the suspending medium. The aim of the present study was to investigate the effect of cations Na+ and Ca2+ on the efficacy of the PI of the gram-negative Pseudomonas aeruginosa and the gram-positive Staphylococcus aureus. The bacteria were suspended in buffer containing either meso-tetra(N-methyl-4-pyridyl)-porphyrin or meso-mono-phenyl-tri(N-methyl-4-pyridyl)-porphyrin as photosensitizer and various concentrations of Na+ or Ca2+. The cell suspensions were exposed to a broadband light dose of 9 J/cm2. In buffer without added cations, P. aeruginosa and S. aureus were equally sensitive to PI. Addition of cations strongly decreased the sensitivity of both bacteria to PI, with the PI of P. aeruginosa being much more decreased than that of S. aureus, and Ca2+ being more effective than Na+. The decreased sensitivity was accompanied by a reduced binding of the photosensitizers to the bacteria.  相似文献   

3.
Gao P  Xu G  Shi X  Yuan K  Tian J 《Electrophoresis》2006,27(9):1784-1789
The rapid detection of pathogenic bacteria is extremely important in biotechnology and clinical diagnosis. CE has been utilized in the field of bacterial analysis for many years, but to some extent, simultaneous separation and identification of certain microbes from complex samples by CE coupled with UV detector is still a challenge. In this paper, we propose a new strategy for rapid separation and identification of Staphylococcus aureus (S. aureus) in bacterial mixtures by means of specific mAb-coated latex coupled with CZE. An appropriate set of conditions that selectively isolated S. aureus from the microorganisms Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were established. S. aureus could be differentiated from the others by unique peaks in the electropherograms. The validity was also confirmed by LIF with antibodies specific to both the latex and the microbial cells. The LOD is as low as 9.0 x 10(5) colony forming unit/mL. We have also utilized this technology to identify S. aureus in a stool sample coming from a healthy volunteer spiked successfully with S. aureus. This CZE-UV technique can be applied to rapid diagnosis of enteritis caused by S. aureus or other bacterial control-related fields needing rapid identification of target pathogens from microbial mixtures. In theory, this method is suitable for the detection of any bacterium as long as corresponding bacterium-specific antibody-coated latex is available.  相似文献   

4.
The binding of metal ions to Pseudomonas aeruginosa PAO1 cells attached to a ZnSe surface has been observed in this research through cation exchange experiments using ATR-IR spectroscopy. A biofilm consisting of a single layer of Pseudomonas aeruginosa PAO1 cells was formed on a ZnSe prism by flowing a bacterial suspension in a 0.03 mol L(-)(1) NaNO(3) solution at pH 5.0 across its surface. Exposure of the biofilm to chromium(III) nitrate solution resulted in increases in all band absorbances. This absorbance increase has been attributed to the binding of chromium(III) to the bacterial exopolymers associated with the prism surface. The chromium(III) binding causes the exopolymers to contract and move the bacterial cell closer to the ZnSe surface. Further study of chromium(III) ion exchange using a mutant P. aeruginosa with a truncated lipopolysaccharide (LPS) chain resulted in much smaller absorbance changes. This observation supports the view that the extension of bacterial exopolymers and hence the distance of the bacterial cell from the surface is strongly influenced by environmental factors such as the presence of metal cations. Following chromium(III) cation exchange, the bacterial band absorbances remained constant even when the bacteria were washed with a 0.03 mol L(-)(1) NaNO(3) solution, indicating that the chromium(III) was irreversibly bound. Ion exchange with nickel(II) and cobalt(II) nitrate solutions within identical biofilms showed that these cations caused relatively small increases in absorbances that were reversible, indicating that nickel(II) and cobalt(II) are less strongly bound than chromium(III) within P. aeruginosa biofilms. The absence of discernible IR spectral changes with metal binding appears to indicate a predominantly electrostatic mechanism for binding of Cr(III), Ni(II), and Co(II) ions by bacteria in the early stages of biofilm formation.  相似文献   

5.
A number of acylthioureas, 2-((4-methylphenoxy)methyl)-N-(aryl-carbamothioyl)benzamides (aryl = 3,5-dichlorophenyl, 2,3-dichlorophenyl, 3,4-dichloro-phenyl, 2,4,5-trichlorophenyl, 3,4,5-trichlorophenyl, 2-bromophenyl, 2,4-dibromophenyl, 2,5-dibromophenyl, 2-iodophenyl, 3-fluorophenyl, 2,3,4-trifluorophenyl, 2,4,5-trifluoro-phenyl, 2,4,6-trifluorophenyl) have been synthesized, characterized by elemental analysis, IR and NMR spectroscopy and tested for their interaction with bacterial cells in free and adherent state. The anti-pathogenic activity was correlated with the presence of one iodine, bromide or fluorine, and two or three chloride atoms on the N-phenyl substituent of the thiourea moiety, being significant especially on Pseudomonas aeruginosa and Staphylococcus aureus strains, known for their ability to grow in biofilms. Our results demonstrate the potential of these derivatives for further development of novel anti-microbial agents with antibiofilm properties.  相似文献   

6.
The ease of removal of differently sized and shaped bacteria from substrata with defined surface topographies and features was investigated. Surfaces with defined surface topography (smooth or with randomly spaced surface features (pits) of 0.5 microm diameter), chemistry (titanium oxide), and wettability (89-93 degrees) were produced. Atomic force microscopy (AFM) was used to determine the ease of bacterial removal from substrata; gram negative Pseudomonas aeruginosa (rods 1 microm width x 3 microm length) and gram positive Staphylococcus aureus (1 microm diameter coccus). The AFM tip was scanned across the retained cells under liquid (contact mode). Over time, using a continuous perpendicular tip force, approximately one third of the cells were removed from the surface following lateral movement of the AFM tip across the surface. When the perpendicular tip force was increased S. aureus were removed more easily from smooth surfaces. In contrast P. aeruginosa cells were removed more easily from the 0.5 microm featured surfaces. The shape of the cell with respect to the shape of the substratum features influences the ease of removal of the cell from the surface: on smooth surfaces the cocci had a smaller cell:surface contact area, whereas the rods had a larger cell:surface contact area. Conversely on featured surfaces the cocci had a larger cell:surface contact area, whereas rods that lay across features had a smaller cell:surface contact area. Using engineered surfaces with defined properties, it has been shown that manipulation of a single parameter (surface roughness) had an effect on the strength of microbial retention.  相似文献   

7.
Kim KP  Kim YG  Choi CH  Kim HE  Lee SH  Chang WS  Lee CS 《Lab on a chip》2010,10(23):3296-3299
Antibiotic resistance of biofilms is a growing public health concern due to overuse and improper use of antibiotics. Thus, determining an effective minimal concentration of antibiotics to eradicate bacterial biofilms is crucial. Here we present a simple, novel one-pot assay for the analysis of antibiotic susceptibility of bacterial biofilms using a microfluidics system where continuous concentration gradients of antibiotics are generated. The results of minimal biofilm eradication concentration (MBEC) clearly confirm that the concentration required to eradicate biofilm-grown Pseudomonas aeruginosa is higher than the minimal inhibitory concentration (MIC) that has been widely used to determine the lowest concentration of antibiotics against planktonically grown bacteria.  相似文献   

8.
Microrheology probes the mesoscale between bulk rheology, which provides an integral sample response, and nanorheology, which refers to a local response at a molecular confinement level. The term ‘microrheology’ is often used to refer to optical particle tracking methods that measure a local response of a sample. In contrast to this, non-optical microrheology techniques generally allow two different effects to be studied: actual confinement effects on the rheology and boundary effects such as slip. Investigating the mesoscale range has additional advantages such as the possibility to perform measurements with small sample volumes and at high shear rates. This review bundles the wide array of non-optical techniques into five categories: adaptations to a conventional rotational rheometer, sliding plate rheometry on a micrometer scale, microfluidics, piezo vibrators and radial channel flows. The concept of each set of techniques is described, together with their operational window and examples of recent studies.  相似文献   

9.
The enantiomeric separation of ofloxacin enantiomers (OFLX) was achieved by using capillary electrophoresis partial-filled with Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) as chiral selectors. Experimental parameters, including the concentration of background electrolyte, applied voltage, length of the filled bacteria plug, and pH of the buffer, were intensively investigated. Baseline separation of OFLX could be achieved within 7 min by using E. coli and P. aeruginosa as chiral selectors under the following conditions: electrophoretic buffer composed of 10 mM phosphate buffer at pH 7.4, applied voltage at 15 kV, and the bacteria (6.0 × 10(8) cells/mL) were injected into the capillary by gravity with injection height of 17.5 cm for 180 s (E. coli), 300 s (P. aeruginosa), and 300 s (S. aureus), respectively. E. coli and P. aeruginosa had better chiral selectivity for OFLX than S. aureus, which was in good agreement with OFLX having better antimicrobial activity on Gram-negative rather than Gram-positive bacteria. A novel method was developed for the enantioselective separation of enantiomers using bacteria as chiral selectors, which provides a new approach for antimicrobials enantioselective analysis, chiral pharmacodynamics, and chiral pharmacokinetics studies.  相似文献   

10.
由于抗生素的不当使用和细菌多药耐药的出现, 迫切需要开发新的抗菌剂. 本文制备了具有光热转换性能的正电荷半导体高分子材料及具有协同抗菌活性的半导体聚合物纳米粒子(SP-PPh3 NPs). SP-PPh3 NPs的光热转化效率为43.8%. 带正电荷的SP-PPh3 NPs可以附着在细菌上, 有助于将热量有效传递给细菌. 在热和正电荷的协同作用下, SP-PPh3 NPs对革兰氏阴性大肠杆菌(E. coli)和革兰氏阳性金黄色葡萄球菌(S. aureus)均具有抗菌活性, 其对二者的体外抑菌率分别为99.9%和98.6%. 此外, SP-PPh3 NPs具有良好的生物相容性, 对小鼠的主要器官几乎无副作用. 对细菌感染的小鼠皮肤伤口用SP-PPh3 NPs治疗12 d后, 伤口可以很好地愈合.  相似文献   

11.
A facile and green route for the synthesis of copper nanoparticles (Cu NPs) has been achieved using green tea extract as a reducing, capping and stabilizing agent. UV–visible spectra gave surface plasmon resonance at 560 nm. The Cu NPs were characterized using various techniques. The size of the Cu NPs was about 20 nm. Antibacterial activity of biogenic Cu NPs were investigated against bacterial species Staphylococcus aureus , Bacillus subtilis , Pseudomonas aeruginosa and Escherichia coli and compared based on diameter of inhibition zone in disc diffusion assay and minimum inhibitory concentration and minimum bactericidal concentration of NPs dispersed in liquid cultures. The NPs showed better inhibitory activity against Gram‐positive bacteria (S. aureus and B. subtilis ) compared to Gram‐negative bacteria. Toxicity of the NPs was evaluated against animal cell line using MTT assay.  相似文献   

12.
The complex nature of bacterial cell membrane and structure of biofilm has challenged the efficacy of antimicrobial photodynamic therapy. This study was aimed to synthesize a polycationic chitosan-conjugated rose bengal (CSRB) photosensitizer and test its antibiofilm efficacy on Enterococcus faecalis (gram positive) and Pseudomonas aeruginosa (gram negative) using photodynamic therapy. During experiments, CSRB was tested along with an anionic photosensitizer rose bengal (RB) and a cationic photosensitizer methylene blue (MB) for uptake and killing efficacy on 7-day-old E. faecalis and P. aeruginosa biofilms. Microbiological culture based analysis was used to analyze the cell viability, while laser scanning confocal microscopy (LSCM) was used to examine the structure of biofilm. The synthesized CSRB showed absorbance spectrum similar to the RB. The concentration of CSRB uptaken by both the bacterial biofilms was significantly higher than that of RB and MB (P < 0.05). Photoactivation resulted in significantly higher elimination of both bacterial biofilms sensitized with CSRB than RB and MB. The structure of biofilm under LSCM was found to be disrupted following CSRB treatment. The present study highlighted the importance of inherent cell membrane permeabilizing effect of chitosan and increased cell/biofilm uptake of conjugated photosensitizer to produce significant antibiofilm efficacy during photodynamic therapy.  相似文献   

13.
The sol-gel transition of aqueous barley β-glucan solutions which undergo gelation with ageing has been studied by conventional bulk rheology, phase contrast microscopy and particle tracking microrheology. Characterisation of the primary structure of the β-glucan isolate was carried out by enzymic methods and HPLC. The Brownian diffusion of fluorescent microspheres (0.75 μm diameter, carboxylate-coated particles) was used to probe the spatial mechanical properties of the gelling systems at the scale of microns; the potential use of passive particle tracking to study biopolymer gelling systems that present spatial heterogeneities is thus explored. For the β-glucan gels cured at 25°C both microrheology and bulk rheology revealed that with increasing the polysaccharide concentration the gelation time decreased, while the gelation rate and gel strength of the barley β-glucan gels increased. The particle tracking method had higher sensitivity and could map molecular ordering and structural heterogeneities in the evolving polysaccharide network at a micro-level. That is, different size pores were generated upon ageing with regions of depleted or less amount of β-glucan molecules. Furthermore, this method could detect changes in the fine structure of the system before such events can be registered by bulk rheological measurements; i.e. microheterogeneity and aggregation of β-glucan chains were revealed by particle tracking at earlier temporal stages of the experiment.  相似文献   

14.
Different N-substituted benzisoselenazol-3(2H)-ones, analogues of ebselen were designed as new antiviral and antimicrobial agents. We report their synthesis, chemical properties as well as study on biological activity against broad spectrum of pathogenic microorganisms (Staphylococcus aureus, Staphylococcus simulans, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Candida albicans, Aspergillus niger) and viruses (herpes simplex virus type 1 (HSV-1), encephalomyocarditis virus (EMCV), vesicular stomatitis virus (VSV)), in vitro. Most of them exhibited high activity against viruses (HSV-1, EMCV) and gram-positive bacteria strains (S. aureus, S. simulans), while their activity against gram-negative bacteria strains (E. coli, P. aeruginosa, K. pneumoniae) was substantially lower. Some of tested compounds were active against yeast C. albicans and filamentous fungus A. niger.  相似文献   

15.
The antibacterial activity of honey samples from different sources were collected and investigated against Bacillus cereus, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 27736, Morganella morganii, Micrococcus luteus NRRL B-4375, Escherichia coli ATCC 35218, and Candida albicans. Pathogens exhibited different sensitivities towards the honey samples. The results showed that majority of the honey samples (75%) generally inhibitied the bacteria tested. The honey samples which were obtained from Izmir (samples 1 and 2) proved more effective as inhibitors against P. aeruginosa, E. coli, and S. aureus. The honey which was obtained from Mu?la (sample 5) exhibited high anticandidal activity on C. albicans. A comparison of the honey samples on the basis of pollen content revealed that they were heterofloral, and samples which had highest antibacterial activity against P. aeruginosa, E. coli, and S. aureus were dominated by pollen from Chenopodiaceae/Amaranthaceae (sample 1), and Trifolium, Trigonella, Cyperaceae, Zea mays and Anthemis taxa (sample 2). The honey proved more effective on bacteria than antibiotics.  相似文献   

16.
Towards our overall objectives of developing potent antimicrobial materials to combat the escalating threat to human health posed by the transmission of surface-adhering pathogenic bacteria, we have investigated the photobactericidal activity of cellulose nanocrystals that have been modified with a porphyrin-derived photosensitizer (PS). The ability of these previously synthesized porphyrin-cellulose-nanocrystals (CNC-Por (1)) to mediate bacterial photodynamic inactivation was investigated as a function of bacterial strain, incubation time and illumination time. Despite forming an insoluble suspension, CNC-Por (1) showed excellent efficacy toward the photodynamic inactivation of Acinetobacter baumannii, multidrug-resistant Acinetobacter baumannii (MDRAB) and methicillin-resistant Staphylococcus aureus (MRSA), with the best results achieving 5-6 log units reduction in colony forming units (CFUs) upon illumination with visible light (400-700 nm; 118 J cm(-2)). CNC-Por (1) mediated the inactivation of Pseudomonas aeruginosa, although at reduced activity (2-3 log units reduction). Confocal laser scanning microscopy of CNC-Por (1) after incubation with A. baumannii or S. aureus suggested a lack of internalization of the PS. Research into alternative materials such as CNC-Por (1) may lead to their application in hospitals and healthcare-related industries wherein novel materials with the capability of reducing the rates of transmission of a wide range of bacteria, particularly antibiotic resistant strains, are desired.  相似文献   

17.
We present comprehensive results on the microrheological study of lyotropic liquid crystalline phases of various space groups constituted by water-monoglyceride (Dimodan) mixtures. In order to explore the viscoelastic properties of these systems, we use particle tracking of probe colloidal particles suitably dispersed in the liquid crystals and monitored by diffusing wave spectroscopy. The identification of the various liquid crystalline phases was separately carried out by small-angle X-ray scattering. The restricted motion of the particles was monitored and identified by the decay time of intensity autocorrelation function and the corresponding time-dependent mean square displacement (MSD), which revealed space group-dependent behavior. The characteristic time extracted by the intersection of the slopes of the MSD at short and long time scales, provided a characteristic time which could be directly compared with the relaxation time obtained by microrheology. Further direct comparison of microrheology and bulk rheology measurements was gained via the Laplace transform of the generalized time-dependent MSD, yielding the microrheology storage and loss moduli, G'(ω) and G'(ω), in the frequency domain ω. The general picture emerging from the microrheology data is that all liquid crystals exhibit viscoelastic properties in line with results from bulk rheology and the transition regime (elastic to viscous) differs according to the specific liquid crystal considered. In the case of the lamellar phase, a plastic fluid is measured by bulk rheology, while microrheology indicates viscoelastic behavior. Although we generally find good qualitative agreement between the two techniques, all liquid crystalline systems are found to relax faster when studied with microrheology. The most plausible explanation for this difference is due to the different length scales probed by the two techniques: that is, microscopical relaxation on these structured fluids, is likely to occur at shorter time scales which are more suitably probed by microrheology, whereas bulk, macroscopic relaxations occurring at longer time scales can only be probed by bulk rheology.  相似文献   

18.
We report a new strategy for differential delivery of antimicrobials to bacterial infection sites with a lipase-sensitive polymeric triple-layered nanogel (TLN) as the drug carrier. The TLN was synthesized by a convenient arm-first procedure using an amphiphilic diblock copolymer, namely, monomethoxy poly(ethylene glycol)-b-poly(ε-caprolactone), to initiate the ring-opening polymerization of the difunctional monomer 3-oxapentane-1,5-diyl bis(ethylene phosphate). The hydrophobic poly(ε-caprolactone) (PCL) segments collapsed and surrounded the polyphosphoester core, forming a hydrophobic and compact molecular fence in aqueous solution which prevented antibiotic release from the polyphosphoester core prior to reaching bacterial infection sites. However, once the TLN sensed the lipase-secreting bacteria, the PCL fence of the TLN degraded to release the antibiotic. Using Staphylococcus aureus (S. aureus) as the model bacterium and vancomycin as the model antimicrobial, we demonstrated that the TLN released almost all the encapsulated vancomycin within 24 h only in the presence of S. aureus, significantly inhibiting S. aureus growth. The TLN further delivered the drug into bacteria-infected cells and efficiently released the drug to kill intracellular bacteria. This technique can be generalized to selectively deliver a variety of antibiotics for the treatment of various infections caused by lipase-secreting bacteria and thus provides a new, safe, effective, and universal approach for the treatment of extracellular and intracellular bacterial infections.  相似文献   

19.
Hwang KY  Kwon SH  Jung SO  Lim HK  Jung WJ  Park CS  Kim JH  Suh KY  Huh N 《Lab on a chip》2011,11(21):3649-3655
We have developed a miniaturized bead-beating device to automate nucleic acids extraction from Gram-positive bacteria for molecular diagnostics. The microfluidic device was fabricated by sandwiching a monolithic flexible polydimethylsiloxane (PDMS) membrane between two glass wafers (i.e., glass-PDMS-glass), which acted as an actuator for bead collision via its pneumatic vibration without additional lysis equipment. The Gram-positive bacteria, S. aureus and methicillin-resistant S. aureus, were captured on surface-modified glass beads from 1 mL of initial sample solution and in situ lyzed by bead-beating operation. Then, 10 μL or 20 μL of bacterial DNA solution was eluted and amplified successfully by real-time PCR. It was found that liquid volume fraction played a crucial role in determining the cell lysis efficiency in a confined chamber by facilitating membrane deflection and bead motion. The miniaturized bead-beating operation disrupted most of S. aureus within 3 min, which turned out to be as efficient as the conventional benchtop vortexing machine or the enzyme-based lysis technique. The effective cell concentration was significantly enhanced with the reduction of initial sample volume by 50 or 100 times. Combination of such analyte enrichment and in situ bead-beating lysis provided an excellent PCR detection sensitivity amounting to ca. 46 CFU even for the Gram-positive bacteria. The proposed bead-beating microdevice is potentially useful as a nucleic acid extraction method toward a PCR-based sample-to-answer system.  相似文献   

20.
A novel series of quaternary ammonium cationic derivatives based on tetrapyridyl-porphyrin was synthesized.All the compounds were evaluated for their in vitro antibacterial activities against S.aureus,E.coli and P.aeruginosa,and antifungal activities against C.albicans,where microorganisms were exposed and unexposed to the irradiation.The results revealed that some of these compounds,especially,3a and 4a displayed satisfactory antibacterial activity against Gram-positive bacteria S.aureus and moderate an...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号