首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nonlinear grating problem is modeled by Maxwell's equations with transparent boundary conditions. The nonlocal boundary operators are truncated by taking sufficiently many terms in the corresponding expansions. A finite element method with the truncation operators is developed for solving the nonlinear grating problem. The two posterior error estimates are established. The a posterior error estimate consists of two parts: finite element discretization error and the truncation error of the nonlocal boundary operators. In particular, the truncation error caused by truncation operations is exponentially decayed when the parameter N is increased. Numerical experiment is included to illustrate the efficiency of the method. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1101–1118, 2015  相似文献   

2.
A priori error estimates in the H1- and L2-norms are established for the finite element method applied to the exterior Helmholtz problem, with modified Dirichlet-to-Neumann (MDtN) boundary condition. The error estimates include the effect of truncation of the MDtN boundary condition as well as that of discretization of the finite element method. The error estimate in the L2-norm is sharper than that obtained by the author [D. Koyama, Error estimates of the DtN finite element method for the exterior Helmholtz problem, J. Comput. Appl. Math. 200 (1) (2007) 21-31] for the truncated DtN boundary condition.  相似文献   

3.
孙澈 《计算数学》1985,7(4):392-404
关于二阶双曲型方程有限元方法的理论研究,已有不少工作,如[1]—[5]。[5]对具Dirichlet边界条件且初边值均取0值的一类非线性双曲方程定解问题的有限元方法,导出了H~1-逼近阶估计,其中,对有关辅助函数u([5],p,151)施加了||?u||_(L~∞(Ω×[0,T]))< ∞的假定。 本文对[5]中研究过的方程,就Dirichlet边界及第三类边界两种情况,给出了半离散Galerkin方法H~1及L~2误差估计。得到的逼近阶都是最佳的,而且,在建立H~1估计的  相似文献   

4.
The steady three-dimensional exterior flow of a viscoelastic non-Newtonian fluid is approximated by reducing the corresponding nonlinear elliptic–hyperbolic system to a bounded domain. On the truncation surface with a large radius R, nonlinear, local second-order artificial boundary conditions are constructed and a new concept of an artificial transport equation is introduced. Although the asymptotic structure of solutions at infinity is known, certain attributes cannot be found explicitly so that the artificial boundary conditions must be constructed with incomplete information on asymptotics. To show the existence of a solution to the approximation problem and to estimate the asymptotic precision, a general abstract scheme, adapted to the analysis of coupled systems of elliptic–hyperbolic type, is proposed. The error estimates, obtained in weighted Sobolev norms with arbitrarily large smoothness indices, prove an approximation of order O(R−2+ε), with any ε>0. Our approach, in contrast to other papers on artificial boundary conditions, does not use the standard assumptions on compactly supported right-hand side f, leads, in particular, to pointwise estimates and provides error bounds with constants independent of both R and f. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we are concerned with the error analysis for the finite element solution of the two-dimensional exterior Neumann boundary value problem in acoustics. In particular, we establish explicit priori error estimates in H1 and L2- norms including both the effect of the truncation of the DtN mapping and that of the numerical discretization. To apply the finite element method (FEM) to the exterior problem, the original boundary value problem is reduced to an equivalent nonlocal boundary value problem via a Dirichlet-to-Neumann (DtN) mapping represented in terms of the Fourier expansion series. We discuss essential features of the corresponding variational equation and its modification due to the truncation of the DtN mapping in appropriate function spaces. Numerical tests are presented to validate our theoretical results.  相似文献   

6.
In this article, we consider a single‐phase coupled nonlinear Stefan problem of the water‐head and concentration equations with nonlinear source and permeance terms and a Dirichlet boundary condition depending on the free‐boundary function. The problem is very important in subsurface contaminant transport and remediation, seawater intrusion and control, and many other applications. While a Landau type transformation is introduced to immobilize the free boundary, a transformation for the water‐head and concentration functions is defined to deal with the nonhomogeneous Dirichlet boundary condition, which depends on the free boundary function. An H1‐finite element method for the problem is then proposed and analyzed. The existence of the approximation solution is established, and error estimates are obtained for both the semi‐discrete schemes and the fully discrete schemes. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

7.

In this paper, based on the natural boundary reduction advanced by Feng and Yu, we couple the finite element approach with the natural boundary element method to study the weak solvability and Galerkin approximation of a class of nonlinear exterior boundary value problems. The analysis is mainly based on the variational formulation with constraints. We prove the error estimate of the finite element solution and obtain the asymptotic rate of convergence. Finally, we also give a numerical example.

  相似文献   

8.
An inverse boundary value problem for a nonlinear parabolic equation is considered. Two-sided estimates for the norms of values of a nonlinear operator in terms of those of a corresponding linear operator are obtained.On this basis, two-sided estimates for the modulus of continuity of a nonlinear inverse problem in terms of that of a corresponding linear problem are obtained. A method of auxiliary boundary conditions is used to construct stable approximate solutions to the nonlinear inverse problem. An accurate (to an order) error estimate for the method of auxiliary boundary conditions is obtained on a uniform regularization class.  相似文献   

9.
Based on the pressure projection stabilized methods, the semi-discrete finite element approximation to the time-dependent Navier–Stokes equations with nonlinear slip boundary conditions is considered in this paper. Because this class of boundary condition includes the subdifferential property, then the variational formulation is the Navier–Stokes type variational inequality problem. Using the regularization procedure, we obtain a regularized problem and give the error estimate between the solutions of the variational inequality problem and the regularized problem with respect to the regularized parameter \({\varepsilon}\), which means that the solution of the regularized problem converges to the solution of the Navier–Stokes type variational inequality problem as the parameter \({\varepsilon\longrightarrow 0}\). Moreover, some regularized estimates about the solution of the regularized problem are also derived under some assumptions about the physical data. The pressure projection stabilized finite element methods are used to the regularized problem and some optimal error estimates of the finite element approximation solutions are derived.  相似文献   

10.
1IntroductionInthispaper,weconsiderthesolvabilityofsingularonedimensionalpLaplacian-likeequationwithNeumannboundaryconditionswhereA(()ispositivefor(>0,h(t)EL'([0,1]),gisacontinuousfunctiondefinedon(--co,0)U(0, co)suchthatg(f)-0asf'l-cojg(()- coas(-0 ,g(()---coas(-0--,andg(')(>0for'/0.Afunctionu(t)issaidtobeasolutionof(1.1),ifthefollowingconditionsaresatisfied:Itiseasytoseethatthenecessaryconditionfortheexistenceofthesolutionof(1.1)isInfact,fromtheassumptionsong,weknowthatu(t)/0foralltE(0,1)…  相似文献   

11.
Abstract. This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms. A Crank-Nicolson approximation for this kind of equations is presented. By using the elliptic Ritz Volterra projection,the analysis of the error estimates for the finite element numerical solutions and the optimal H1-norm error estimate are demonstrated.  相似文献   

12.
The Adomian decomposition method (ADM) can provide analytical approximation or approximated solution to a rather wide class of nonlinear (and stochastic) equations without linearization, perturbation, closure approximation, or discretization methods. In the present work, ADM is employed to solve the momentum and energy equations for laminar boundary layer flow over flat plate at zero incidences with neglecting the frictional heating. A trial and error strategy has been used to obtain the constant coefficient in the approximated solution. ADM provides an analytical solution in the form of an infinite power series. The effect of Adomian polynomial terms is considered and shows that the accuracy of results is increased with the increasing of Adomian polynomial terms. The velocity and thermal profiles on the boundary layer are calculated. Also the effect of the Prandtl number on the thermal boundary layer is obtained. Results show ADM can solve the nonlinear differential equations with negligible error compared to the exact solution.  相似文献   

13.
Recently, Mahale and Nair considered a simplified generalized Gauss-Newton iterative method for getting an approximate solution for the nonlinear ill-posed operator equation under the modified general source condition. The advantage of this method and the source condition over the classical Gauss-Newton iterative method is that the iterations and source condition involve calculation of the Fréchet derivative only at the point x 0, i.e., at the initial approximation for the exact solution x ? of the nonlinear ill-posed operator equation F(x) = y. Motivated by the work of Qinian Jin and Tautenhan, error analysis of the simplified Gauss-Newton iterative method is done in this article under a Morozove-type stopping rule, which is much simpler than the stopping rule considered in the article of Mahale and Nair. An order optimal error estimate is obtained under a modified general source condition which also involves calculation of the Fréchet derivative at the point x 0.  相似文献   

14.
A collocation method based on piecewise polynomials is applied to boundary value problems for mth order systems of nonlinear ordinary differential equations. Optimal a priori estimates are obtained for the error of approximation in the maximum norm and superconvergence is verified at particular points.  相似文献   

15.
We consider the numerical solution by finite difference methods of the heat equation in one space dimension, with a nonlocal integral boundary condition, resulting from the truncation to a finite interval of the problem on a semi-infinite interval. We first analyze the forward Euler method, and then the $θ$-method for $0 < θ ≤ 1$, in both cases in maximum-norm, showing $O(h^2 + k)$ error bounds, where $h$ is the mesh-width and $k$ the time step. We then give an alternative analysis for the case $θ = 1/2$, the Crank-Nicolson method, using energy arguments, yielding a $O(h^2$ + $k^{3/2}$) error bound. Special attention is given the approximation of the boundary integral operator. Our results are illustrated by numerical examples.  相似文献   

16.

We consider a parametric family of boundary value problems for a diffusion equation with a diffusion coefficient equal to a small constant in a subdomain. Such problems are not uniformly well-posed when the constant gets small. However, in a series of papers, Bakhvalov and Knyazev have suggested a natural splitting of the problem into two well-posed problems. Using this idea, we prove a uniform finite element error estimate for our model problem in the standard parameter-independent Sobolev norm. We also study uniform regularity of the transmission problem, needed for approximation. A traditional finite element method with only one additional assumption, namely, that the boundary of the subdomain with the small coefficient does not cut any finite element, is considered.

One interpretation of our main theorem is in terms of regularization. Our FEM problem can be viewed as resulting from a Lavrentiev regularization and a Ritz-Galerkin approximation of a symmetric ill-posed problem. Our error estimate can then be used to find an optimal regularization parameter together with the optimal dimension of the approximation subspace.

  相似文献   


17.
We consider a semilinear parabolic equation subject to a nonlinear dynamical boundary condition that is related to the so-called Wentzell boundary condition. First we prove the existence and uniqueness of global solutions as well as the existence of a global attractor. Then we derive a suitable ?ojasiewicz-Simon type inequality to show the convergence of global solutions to single steady states as time tends to infinity under the assumption that the nonlinear terms f,g are real analytic. Moreover, we provide an estimate for the convergence rate.  相似文献   

18.
The spectral analysis of an efficient step-by-step direct integration algorithm for the structural dynamic equation is presented. The proposed algorithm is formulated in terms of two Hermitian finite difference operators of fifth-order local truncation error and it is unconditionally stable with no numerical damping presenting a fourth-order truncation error for period dispersion (global error). In addition, although it is in competition with higher-order algorithms presented in the literature, the computational effort is similar to that of the classical second-order Newmark’s method. The numerical application for nonlinear structural dynamic problems is also considered.  相似文献   

19.
The estimate refinement method for the polyhedral approximation of convex compact bodies is analyzed. When applied to convex bodies with a smooth boundary, this method is known to generate polytopes with an optimal order of growth of the number of vertices and facets depending on the approximation error. In previous studies, for the approximation of a multidimensional ball, the convergence rates of the method were estimated in terms of the number of faces of all dimensions and the cardinality of the facial structure (the norm of the f-vector) of the constructed polytope was shown to have an optimal rate of growth. In this paper, the asymptotic convergence rate of the method with respect to faces of all dimensions is compared with the convergence rate of best approximation polytopes. Explicit expressions are obtained for the asymptotic efficiency, including the case of low dimensions. Theoretical estimates are compared with numerical results.  相似文献   

20.
We investigate the numerical approximation of the nonlinear Molodensky problem, which reconstructs the surface of the earth from the gravitational potential and the gravity vector. The method, based on a smoothed Nash–Hörmander iteration, solves a sequence of exterior oblique Robin problems and uses a regularization based on a higher-order heat equation to overcome the loss of derivatives in the surface update. In particular, we obtain a quantitative a priori estimate for the error after $m$ steps, justify the use of smoothing operators based on the heat equation, and comment on the accurate evaluation of the Hessian of the gravitational potential on the surface, using a representation in terms of a hypersingular integral. A boundary element method is used to solve the exterior problem. Numerical results compare the error between the approximation and the exact solution in a model problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号