首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[reaction: see text] AgPF6-promoted oxidation of 5,10,15-trialkyl zinc(II) porphyrins led to formation of meso-meso linked diporphyrins, which were further oxidized with Sc(OTf)3 and DDQ to give meso-meso, beta-beta, beta-beta triply linked diporphyrins that exhibited a stronger aggregation propensity than corresponding meso-aryl diporphyrins.  相似文献   

2.
Enlargement of the pi-electronic network of meso-meso, beta-beta, beta-beta triply linked diporphyrin has been exploited by preparing a corresponding dibenzo-fused porphyrin dimer that exhibits a perturbed absorption spectrum and a large two-photon absorption cross section.  相似文献   

3.
The Ag(I)-promoted oxidative meso-meso coupling reaction of 5,15-diaryl Zn(II)-porphyrin was serendipitously found in the course of our synthetic approaches towards photosynthetic reaction centers. Based on this reaction, a variety of directly linked and fused porphyrin arrays have been synthesized, including linear meso-meso-linked porphyrin arrays, windmill- and grid-shaped porphyrin arrays, meso-beta singly linked diporphyrins, beta-beta linked diporphyrins, meso-beta doubly linked (fused) diporphyrins and oligoporphyrins, meso-meso beta-beta doubly linked (fused) diporphyrins, and meso-meso beta-beta-beta-beta triply linked (fused) diporphyrins. The meso-meso coupling reaction of 5,15-diaryl Zn(II)-porphyrins is advantageous considering its high regioselectivity as well as its ease of extension to large porphyrin arrays as is demonstrated by the synthesis of a discrete meso-meso-linked 128-mer and poly(5,15-porphyrinylene). Finally, the oxidation of end-phenyl capped meso-meso-linked zinc porphyrins with DDQ-Sc(OTf)(3) gave pi-conjugated flat porphyrin tapes. To the best of our knowledge, the meso-meso linked 128-mer is the longest man-made discrete molecule, and the porphyrin tape 12-mer is the most extensively conjugated porphyrin array, as evinced by the lowest electronic band peak at 3500 cm(-1).  相似文献   

4.
Directly fused diporphyrins display the extensive pi conjugation as evinced by highly perturbed electronic absorption spectra as well as lowered and largely split first oxidation potentials. Such diporphyrins prepared include meso-beta doubly linked diporphyrins 7, meso-meso beta-beta beta-beta triply linked diporphyrins 8, and meso-meso beta-beta doubly linked diporphyrins 9. Oxidation of 5,15-diaryl-substituted and 5,10,15-triaryl-substituted Ni(II)-, Cu(II)-, and Pd(II)-porphyrins with tris(4-bromophenyl)aminium hexachloroantimonate (BAHA) in CHCl(3) afforded 7, and triply linked Cu(II)-diporphyrins 8a and 8g were respectively prepared by the oxidation of meso-meso singly linked Cu(II)-diporphyrins 5c and 5f with BAHA. Meso-meso beta-beta doubly linked Ni(II)-diporphyrin 9a was isolated along with triply linked Ni(II)-diporphyrin 8e from the similar oxidation of meso-meso singly linked Ni(II)-diporphyrin 5a. Doubly linked diporphyrins 7 and 9a both exhibit significantly perturbed electronic absorption spectra, in which the Soret-like bands are largely split at around 405-418 and 500-616 nm and the Q-bandlike absorption bands are substantially intensified and red-shifted at 748-820 nm, probably as a consequence of symmetry lowering. Triply linked diporphyrins 8 display more strongly perturbed electronic absorption spectra with split Soret-like bands at 408-419 and 567-582 nm and Q-bandlike absorption bands reaching far-infrared region. Structures of three types of fused diporphyrins 7b and 7c, 8g and 8j, and 9a have been unambiguously determined by X-ray crystallography to be nearly coplanar. Both the triply linked diporphyrins 8g and 8j exhibit very flat structures, whereas the doubly linked diporphyrins 7b and 7c exhibit ruffled structures. The doubly linked diporphyrin 9a shows a helically twisted conformation with larger ruffling toward the opposite directions and has been actually separated into two enantiomers, which display strong Cotton effects in the CD spectra. The first oxidation potentials (E(OX1)) decrease in the order of 5 > 7 > or = 9 > 8, indicating lift-up of HOMO orbital in this order, and split potential differences DeltaE = E(OX1) - E(OX2), in turn, increase in the reverse order of 5 < 7< or = 9 < 8. The (1)H NMR spectra have indicated that the aromatic porphyrin ring current becomes weakened in the order of 5 > 7 > 8. Collectively, the electronic interactions between the diporphyrins have been concluded to increase in the other of 5 < 7 < or = 9 < 8.  相似文献   

5.
A meso-meso directly linked cyclic octameric porphyrin square was synthesized via stepwise Suzuki-Miyaura cross coupling reactions, and its ability to capture a guest molecule in the inside cavity has been confirmed.  相似文献   

6.
A manganese(IV)-oxo porphyrin catalyzes C-C bond formation between zinc porphyrins at the meso-position with a two-electron oxidant to afford the meso-meso linked porphyrin dimer efficiently. The meso-meso linked dimer is formed via formation of the porphyrin radical cation, and the rate-determining step in the catalytic cycle is the formation of a manganese(IV)-oxo porphyrin with a two-electron oxidant.  相似文献   

7.
Photophysical properties of porphyrin tapes   总被引:1,自引:0,他引:1  
The novel fused Zn(II)porphyrin arrays (Tn, porphyrin tapes) in which the porphyrin macrocycles are triply linked at meso-meso, beta-beta, beta-beta positions have been investigated by steady-state and time-resolved spectroscopic measurements along with theoretical MO calculations. The absorption spectra of the porphyrin tapes show a systematic downshift to the IR region as the number of porphyrin pigments increases in the arrays. The fused porphyrin arrays exhibit a rapid formation of the lowest excited states (for T2, approximately 500 fs) via fast internal conversion processes upon photoexcitation at 400 nm (Soret bands), which is much faster than the internal conversion process of approximately 1.2 ps observed for a monomeric Zn(II)porphyrin. The relaxation dynamics of the lowest excited states of the porphyrin tapes were accelerated from approximately 4.5 ps for the T2 dimer to approximately 0.3 ps for the T6 hexamer as the number of porphyrin units increases, being explained well by the energy gap law. The overall photophysical properties of the porphyrin tapes were observed to be in a sharp contrast to those of the orthogonal porphyrin arrays. The PPP-SCI calculated charge-transfer probability indicates that the lowest excited state of the porphyrin tapes (Tn) resembles a Wannier-type exciton closely, whereas the lowest excited state of the directly linked porphyrin arrays can be considered as a Frenkel-type exciton. Conclusively, these unique photophysical properties of the porphyrin tapes have aroused much interest in the fundamental photophysics of large flat organic molecules as well as in the possible applications as electric wires, IR sensors, and nonlinear optical materials.  相似文献   

8.
A belt-shaped hexagonal cyclic porphyrin array 2 that comprises of six meso-meso, beta-beta, beta-beta triply linked diporphyrins 3 bridged by 1,3-phenylene spacers is prepared by oxidation from cyclic dodecameric array 1 consisting of six meso-meso directly linked diporphyrins 4 with DDQ and Sc(OTf)3. The absorption spectrum of 2 is similar to that of the constituent subunit 3 but shows a slight red-shift for the Q-bands in near-infrared (NIR) region, indicating the exciton coupling between the neighboring diporphyrin chromophores. Observed total exciton coupling energies in the absorption spectra were largely matched with the calculated values based on point-dipole exciton coupling approximation. It was found that the experimental exciton coupling strength (292 cm(-1)) of the Q-band in 2 is slightly larger than the calculated one (99 cm(-1)), indicating that the electronic communications are enhanced through 1,3-phenylene linkers in hexameric macromolecule. A rate of the excitation energy hopping (EEH) that occurs in 2 at the lowest excited singlet state in the near-infrared region has been determined to be (1.8 ps)(-1) on the basis of the pump-power dependent femtosecond transient absorption (TA) and the transient absorption anisotropy (TAA) decay measurements. The 2 times faster EEH rate of 2 than that of 1 (4.0 ps)(-1) mainly comes from involving through-bond energy transfer among diporphyrin subunits via 1,3-phenylene bridges as well as F?rster-type through-space EEH processes. STM measurement of 2 in the Cu(100) surface revealed that it takes several discrete conformations with respect to the relative orientation of neighboring diporphyrins. Collectively, an effective EEH in the NIR region is realized in 2 due largely to the intensified oscillator strength in the S(1) state (Q-band) and the close proximity held by 1,3-phenylene spacers.  相似文献   

9.
BasedonthecrystalstructuredatafromXrayanalysis[1,2]andthespectralpropertiesofeachchromophoreofCPC[3,4],Sauerandcoworkers[5,6]expectedthatthedynamicsofenergytransferprocessesshouldtakeplacewithin10—30pstimescalebetweentwotrimersofCPChexamer.Furthermore,Zhaoandco…  相似文献   

10.
We investigated the excitation energy transfer process of meso-meso linked zinc(II) porphyrin arrays using the on-the-fly filtered propagator path integral method. Details of the dynamics such as coherence length of a porphyrin array are estimated by analysis of the characteristics of forward-backward pair trajectories. Upon examination of the convergence of the reduced density matrix with respect to the subset of Hilbert space trajectories, we determine the number of porphyrin units that form collective coherent states, that is, the coherence length. Simulation results show that the coherence length of zinc(II) porphyrin arrays is up to 4 units, which agrees excellently with experimental observations. On the other hand, the energy bias provided by the energy-accepting 5,15-bisphenylethynylated zinc(II) porphyrin reduces the degree of coherence which becomes negligible for an array with more than for porphyrin units. Considering conformational inhomogeneity, we found that the experimentally determined coherence length is the result of electronic and environmental influence rather than the structure disorder. Temperature dependence is also discussed.  相似文献   

11.
State-of-the-art quantum simulations on a full-dimensional ab initio potential energy surface are used to characterize the properties of the water hexamer. The relative populations of the different isomers are determined over a wide range of temperatures. While the prism isomer is identified as the global minimum-energy structure, the quantum simulations, which explicitly include zero-point energy and quantum thermal motion, predict that both the cage and prism isomers are present at low temperature down to almost 0 K. This is largely consistent with the available experimental data and, in particular, with very recent measurements of broadband rotational spectra of the water hexamer recorded in supersonic expansions.  相似文献   

12.
The electronic excited states of a meso-meso beta-beta doubly linked bis-porphyrin are comprehensively investigated by measuring its circular dichroism (CD) and magnetic circular dichroism (MCD) spectra. The observed spectroscopic properties are rationalized by DFT calculations. The frontier molecular orbitals (MOs) are constructed by the linear combinations of the constituent monomers' four MOs. Comparison of a theoretical CD spectrum based on time-dependent DFT (TDDFT) with the experimental spectra resulted in the assignment of the helical conformation of the dimer. This assignment is contrary to the previous assignment based on the point-dipole approximation (exciton coupling theory).  相似文献   

13.
The hydrogen bond network of ethanol clusters is among the most complex hydrogen bond networks of molecular clusters. One of the reasons of its complexity arises from the number of possible ethanol monomers (there are three isoenergetic isomers of the ethanol monomer). This leads to difficulties in the exploration of potential energy surfaces (PESs) of ethanol clusters. In this work, we have explored the PES of the ethanol hexamer at the MP2/aug-cc-pVDZ level of theory. We have provided structures and their relative stability at 0 K and for temperatures ranging from 20 to 400 K in the gas phase. These structures are used to compute the theoretical infrared (IR) spectrum of the ethanol hexamer at the MP2/aug-cc-pVDZ level of theory. As a result, 98 different structures have been investigated, and six isomers are reported to be the most isoenergetically stable structures of the ethanol hexamer. These isomers are folded cyclic structures in which the stability is enhanced by the implication of CH⋯O interactions. Our investigations show that the PES of the ethanol hexamer is very flat, yielding several isoenergetic structures. Furthermore, we have noted that several isomers contribute to the population of the ethanol hexamer at high temperatures. As far as the IR spectroscopic study is concerned, we have found that the IR spectra of the most stable structures are in good agreement with the experiment. Considering this agreement, these structures are used to assign the experimental peaks in the CH-stretching region. We concluded that the stability of the structures of the ethanol hexamer is related both to OH⋯O hydrogen bonds and CH⋯O interactions. Overall, we have found that the IR spectrum of the ethanol hexamer, calculated from the contribution of all the possible stable structures weighted by their probability, excellently reproduce the experimental spectrum of the ethanol hexamer.  相似文献   

14.
The first benzene-centered, phthalocyanine hexamer has been synthesized by a dicobaltoctacarbonyl-catalyzed trimerization reaction of an ethynyl-bridged bisphthalocyanine and characterized by different spectrometric and spectroscopic techniques.  相似文献   

15.
Journal of Structural Chemistry - Results are presented for a molecular dynamics simulation of melting of the water hexamer from three-dimensional configurations (the book, cage, and prism...  相似文献   

16.
The origin of the intermolecular interaction, especially the many-body interaction, in eight low-lying water hexamer structures (prism, cage, book-1, book-2, cyclic-chair, bag, cyclic-boat-1, and cyclic-boat-2) is unraveled using the localized molecular orbital energy decomposition analysis (LMO-EDA) method at the second-order M?ller-Plesset perturbation (MP2) level of theory with a large basis set. It is found that the relative stabilities of these hexamer structures are determined by delicate balances between different types of interaction. According to LMO-EDA, electrostatic and exchange interactions are strictly pairwise additive. Dispersion interaction in these water hexamer structures is almost pairwise additive, with many-body effects varying from -0.13 to +0.05 kcal/mol. Repulsion interaction is roughly pairwise additive, with many-body effects varying from -0.84 to -0.62 kcal/mol. Polarization interaction is not pairwise additive, with many-body effects varying from -13.10 to -8.85 kcal/mol.  相似文献   

17.
Directly meso-meso linked porphyrin rings CZ4, CZ6, and CZ8 that respectively comprise four, six, and eight porphyrins have been synthesized in a stepwise manner from a 5,10-diaryl zinc(II) porphyrin building block. Symmetric cyclic structures have been indicated by their very simple (1)H NMR spectra that exhibit only a single set of porphyrin and their absorption spectra that display a characteristic broad nonsplit Soret band around 460 nm. Energy minimized structures calculated at the B3LYP/6-31G* level indicate that a dihedral angle between neighboring porphyrins decreases in order of CZ6 > CZ8 > CZ4, which is consistent with the (1)H NMR data. Photophysical properties of these molecules have been examined by the steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related with the excitation energy migration processes within the porphyrin rings, where the exciton-exciton annihilation time and the polarization anisotropy rise time are well described in terms of the Forster-type incoherent energy hopping model. Consequently, the excitation energy hopping rates have been estimated for CZ4 (119 +/- 2 fs)(-)(1), CZ6 (342 +/- 59 fs)(-)(1), and CZ8 (236 +/- 31 fs)(-)(1), which reflect the magnitude of the electronic coupling between the neighboring porphyrins. Overall, these porphyrin rings serve as a well-defined wheel-shaped light harvesting antenna model in light of very efficient excitation energy hopping along the ring.  相似文献   

18.
Here,the selective adsorption behaviors of guest molecule COR in two hexamer host grids were investigated by means of scanning tunnelling microscope(STM).The assembled structures of small functional organic molecules TTBTA and TATBA were thermodynamically stable.Interestingly,the introduction of the guest molecule COR destroyed the original hexamer structure of TTBTA and combined with it to form a new triangular host-guest system.Different from TTBTA,the introduction of the guest molecule COR did not affect the six-membered ring structure of TATBA.Furthermore,the co-assembly structure of TTBTA/TATBA/COR was established and the guest molecule COR showed preferential adsorption to the TATBA host grid.Density functional theory(DFT) calculations had been performed to disclose the mechanism of the involved assemblies.  相似文献   

19.
We present extensions to the local-monomer (LMon) Model, a general quantum method to describe coupled intramolecular vibrational modes of a molecular cluster consisting of a set of monomers [Y. Wang and J. M. Bowman, J. Chem. Phys. 134, 154510 (2011)], to incorporate monomer-monomer coupling. A central aspect of the LMon model is a local normal-mode analysis, done for each monomer, perturbed by all other mononers. Monomer-monomer coupling is described by several approaches based on these normal-mode analyses. Two are Hückel-type models, where coupling constants for each intramolecular mode are determined non-empirically from normal-mode analyses. One model, the simple one, is limited to nearest-neighbor interactions. The second and more general one determines monomer-monomer couplings from the full and local-monomer Hessians, with no further assumptions. The simple approach is applied to the water tetramer, pentamer and ring hexamer. For the tetramer and ring hexamer cases, artificial degeneracies of the intramolecular energies in the LMon model, owing to the high symmetry of the cluster, are correctly lifted. The general approach to obtain coupling constants is illustrated for the ring hexamer, where new fundamental energies are reported. Other, more rigorous approaches are suggested but not implemented.  相似文献   

20.
Femtosecond fluorescence anisotropy measurements for a variety of cyclic porphyrin arrays such as Zn(II)porphyrin m-trimer and hexamer are reported along with o-dimer and monomer as reference molecules. In the porphyrin arrays, a pair of porphyrin moieties are joined together via triphenyl linkage to ensure cyclic and rigid structures. Anisotropy decay times of the porphyrin arrays can be well described by the F?rster incoherent excitation hopping process between the porphyrin units. Exciton coupling strengths of 74 and 264 cm(-1) for the m-trimer and hexamer estimated from the observed excitation energy hopping rates are close to those of B800 and B850, respectively, in the LH2 bacterial light-harvesting antenna. Thus, these cyclic porphyrin array systems have proven to be useful in understanding energy migration processes in a relatively weak interaction regime in light of the similarity in overall structures and constituent chromophores to natural light-harvesting arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号