首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of 2-(arylazo)phenols (H(2)ap-R; R = OCH(3), CH(3), H, Cl, and NO(2)) with [Os(PPh(3))(2)(CO)(2)(HCOO)(2)] affords a family of organometallic complexes of osmium(II) of type [Os(PPh(3))(2)(CO)(ap-R)] where the 2-(arylazo)phenolate ligand is coordinated to the metal center as a tridentate C,N,O-donor. Structure of the [Os(PPh(3))(2)(CO)(ap-H)] complex has been determined by X-ray crystallography. All the [Os(PPh(3))(2)(CO)(ap-R)] complexes are diamagnetic and show characteristic (1)H NMR signals and intense MLCT transitions in the visible region. They also show emission in the visible region at ambient temperature. Cyclic voltammetry on the [Os(PPh(3))(2)(CO)(ap-R)] complexes shows a reversible Os(II)-Os(III) oxidation within 0.39-0.73 V vs SCE, followed by a reversible Os(III)-Os(IV) oxidation within 1.06-1.61 V vs SCE. Coulometric oxidation of the [Os(PPh(3))(2)(CO)(ap-R)] complexes generates the [Os(III)(PPh(3))(2)(CO)(ap-R)](+) complexes, which have been isolated as the hexafluorophosphate salts. The [Os(III)(PPh(3))(2)(CO)(ap-R)]PF(6) complexes are one-electron paramagnetic and show axial ESR spectra. In solution they behave as 1:1 electrolytes and show intense LMCT transitions in the visible region. The [Os(III)(PPh(3))(2)(CO)(ap-R)]PF(6) complexes have been observed to serve as mild one-electron oxidants in a nonaqueous medium.  相似文献   

2.
The electronic absorption spectra, luminescence spectra and lifetimes (in MeCN at room temperature and in frozen n-C3H7CN at 77 K), and electrochemical potentials (in MeCN) of the novel dinuclear [(tpy)Ru(3)Os(tpy)]4+ and trinuclear [(tpy)Ru(3)Os(3)Ru(tpy)]6- complexes (3 = 2,5-bis(2,2':6',2'-terpyridin-4-yl)thiophene) have been obtained and are compared with those of model mononuclear complexes and homometallic [(tpy)Ru(3)Ru(tpy)]4+, [(tpy)Os(3)Os(tpy)]4+ and [(tpy)Ru(3)Ru(3)Ru(tpy)]6+ Complexes. The bridging ligand 3 is nearly planar in the complexes, as seen from a preliminary X-ray determination of [(tpy)Ru(3)Ru(tpy)][PF6]4, and confers a high degree of rigidity upon the polynuclear species. The trinuclear species are rod-shaped with a distance of about 3 nm between the terminal metal centres. For the polynuclear complexes, the spectroscopic and electrochemical data are in accord with a significant intermetal interaction. All of the complexes are luminescent (phi in the range 10(-4)-10(-2) and tau in the range 6-340 ns, at room temperature), and ruthenium- or osmium-based luminescence properties can be identified. Due to the excited state properties of the various components and to the geometric and electronic properties of the bridge, Ru --> Os directional transfer of excitation energy takes place in the complexes [(tpy)Ru(3)Os(tpy)]4+ (end-to-end) and [(tpy)Ru(3)Os(3)Ru(tpy)]6+ (periphery-to-centre). With respect to the homometallic case, for [(tpy)Ru(3)Os(3)Ru(tpy)]6+ excitation trapping at the central position is accompanied by a fivefold enhancement of luminescence intensity.  相似文献   

3.
Reactions between the Os(VI)-nitrido complexes cis- and trans-[Os(VI)(tpy)(Cl)2(N)]+ (tpy is 2,2':6',2"-terpyridine) and triphenylphosphine sulfide, SPPh3, give the corresponding Os(IV)-phosphoraniminato, [Os(IV)(tpy)(Cl)2(NPPh3)]+, and Os(II)-thionitrosyl, [Os(II)(tpy)(Cl)2(NS)]+, complexes as products. The Os-N bond length and Os-N-P angle in cis-[Os(IV)(tpy)(Cl)2(NPPh3)](PF6) are 2.077(6) A and 138.4(4) degrees. The rate law for formation of cis- and trans-[Os(IV)(tpy)(Cl)2(NPPh3)]+ is first order in both [Os(VI)(tpy)(Cl)2(N)]+ and SPPh3 with ktrans(25 degrees C, CH3CN) = 24.6 +/- 0.6 M(-1) s(-1) and kcis(25 degrees C, CH3CN) = 0.84 +/- 0.09 M(-1) s(-1). As found earlier for [Os(II)(tpm)(Cl)2(NS)]+, both cis- and trans-[Os(II)(tpy)(Cl)2(NS)]+ react with PPh3 to give [Os(IV)(tpy)(Cl)2(NPPh3)]+ and SPPh3. For both complexes, the reaction is first order in each reagent with ktrans(25 degrees C, CH3CN) = (6.79 +/- 0.08) x 10(2) M(-1) s(-1) and kcis(25 degrees C, CH3CN) = (2.30 +/- 0.07) x 10(2) M(-1) s(-1). The fact that both reactions occur rules out mechanisms involving S atom transfer. These results can be explained by invoking a common intermediate, [Os(IV)(tpy)(Cl)2(NSPPh3)]+, which undergoes further reaction with PPh3 to give [Os(IV)(tpy)(Cl)2(NPPh3)]+ and SPPh3 or with [Os(VI)(tpy)(Cl)2(N)]+ to give [Os(IV)(tpy)(Cl)2(NPPh3)]+ and [Os(II)(tpy)(Cl)2(NS)]+.  相似文献   

4.
Reaction of chloranilic acid (H2ca) with [Os(bpy)2 Br2] (bpy = 2,2'-bipyridine) affords a dinuclear complex of type [{Os(bpy)2}2 (ca)]2+, isolated as the perchlorate salt. A similar reaction of H2ca with [Os(PPh3)2 (pap)Br2] (pap = 2-(phenylazo)pyridine) affords a dinuclear complex of type [{Os(PPh3)2 (pap)}2 (ca)]2+ (isolated as the perchlorate salt) and a mononuclear complex of type [Os(PPh3)2 (pap)(ca)]. Reaction of H2ca with [Os(PPh3)2(CO)2(HCOO)2] gives a dinuclear complex of type [{Os(PPh3)2(CO)2}2 (r-ca)], where r-ca is the two electron reduced form of the chloranilate ligand. The structures of the [{Os(PPh3)2 (pap)}2 (ca)](ClO4)2, [Os(PPh3)2 (pap)(ca)], and [{Os(PPh3)2(CO)2}2 (r-ca)] complexes have been determined by X-ray crystallography. In the [{Os(bpy)2}2 (ca)]2+ and [{Os(PPh3)2 (pap)}2 (ca)]2+ complexes, the chloranilate dianion is serving as a tetradentate bridging ligand. In the [Os(PPh3)2 (pap)(ca)] complex, the chloranilate dianion is serving as a bidentate chelating ligand. In the [{Os(PPh3)2(CO)2}2 (r-ca)] complex, the reduced form of the chloranilate ligand (r-ca(4-)) is serving as a tetradentate bridging ligand. All the four complexes are diamagnetic and show intense metal-to-ligand charge-transfer transitions in the visible region. The [Os(PPh3)2 (pap)(ca)] complex shows an Os(II)-Os(III) oxidation, followed by an Os(III)-Os(IV) oxidation on the positive side of a standard calomel electrode. The three dinuclear complexes show two successive oxidations on the positive side of SCE. The mixed-valent Os(II)-Os(III) species have been generated in the case of the two chloranilate-bridged complexes by coulometric oxidation of the homovalent Os(II)-Os(II) species. The mixed-valent Os(II)-Os(III) species show intense intervalence charge-transfer transitions in the near-IR region.  相似文献   

5.
Reaction between the Os(VI) nitrido (OsVI identical to N+) complexes [OsVI(L3)(Cl)2(N)]+ (L3 is 2,2':6',2"-terpyridine (tpy) or tris(1-pyrazolyl)methane (tpm)) and secondary amines (HN(CH2)4O = morpholine, HN(CH2)4CH2 = piperidine, and HN(C2H5)2 = diethylamine) gives Os(V)-hydrazido complexes, [OsV(L3)(Cl)2(NNR2)]+ (NR2 = morpholide, piperidide, or diethylamide). They can be chemically or electrochemically oxidized to Os(VI) or reduced to Os(IV) and Os(III). The Os-N bond lengths and Os-N-N angles in the structures of these complexes are used to rationalize the bonding between the dianionic hydrazido ligand and Os. The rate law for formation of the Os(V) hydrazido complexes with morpholine as the base is first order in [OsVI(L3)(Cl)2(N)]+ and second order in HN(CH2)4O with ktpy(25 degrees C, CH3CN) = (581 +/- 12) M-2 s-1 and ktpm(25 degrees C, CH3CN) = 2683 +/- 40 M-2 s-1. The proposed mechanism involves initial nucleophilic attack of the secondary amine on the Os(VI) nitrido group to give a protonated Os(IV)-hydrazido intermediate. It is subsequently deprotonated and then oxidized by OsVI identical to N+ to Os(V). The extensive redox chemistry for these complexes can be explained by invoking a generalized bonding model. It can also be used to assign absorption bands that appear in the electronic from the visible-near-infrared spectra including a series of d pi-->d pi interconfigurational bands at low energy.  相似文献   

6.
In order to lower the redox potentials of Os(III/II) complexes, the mixed ligand complexes of Os(II) were synthesized. The redox potentials of Os(III/II) complexes could be lowered by the use of 4,4'-dimethyl-2,2'-bipyridine (dmbpy), imidazole (Him) or its derivatives, and chloride ion as ligands, e.g., values of the redox (formal) potentials of 628 mV vs. Ag/AgCl for [Os(bpy)3]3+/2+ (bpy: 2,2'-bipyridine) and -6 mV for [OsCl(Him)(dmbpy)2]2+/+ were given in deaerated 0.1 mol dm-3 phosphate buffer (pH 7.0). The evaluation of Os(II) complexes as electron transfer mediators accessible for amperometric glucose sensors was examined according to the determination of the redox potentials of Os(III/II) complexes and the second-order rate constants for electron transfer between glucose oxidase (GOx) in reduced form and the Os(III) complex. Although the Os(II) complexes with lower redox potentials tended to decrease the second-order rate constants ks, the ks values for the majority of Os(II) complexes synthesized in this study were greater than that for ferrocenecarboxylic acid. Acceleration of the electron-transfer reaction is attributable to the hydrogen bonding and/or the electrostatic interaction between the Os(II) complexes and GOx. It may be consequently concluded that the mixed ligand complexes of Os(II) with bpy (dmbpy), Him (its derivatives), and Cl- can act as more efficient electron transfer mediators for the fabrication of amperometric glucose sensors.  相似文献   

7.
The pincer complexes [MX(CNN)(PP)] (M = Ru, Os; X = Cl, OTf; HCNN = 1-(6-arylpyridin-2-yl)methanamine; PP = diphosphine) have proven to efficiently catalyze both racemization and deuteration of alcohols in the presence of a base. Chiral alcohols have been racemized at 30-50 °C using 1 mol% of Ru or Os pincer complexes and 5 mol% of KOtBu in 2-propanol. Primary and secondary alcohols are efficiently deuterated at the α position, with respect to the OH group, using 2-propanol-d(8) as solvent with Ru or Os pincer complexes and KOtBu at 30-50 °C. For secondary alcohols incorporation of deuterium at the β position has also been observed. In 2-propanol-d(8) the pincer complexes catalyze the simultaneous deuteration and racemization of (S)-1-phenylethanol, the two processes being strictly correlated. For both reactions much the same activity has been observed with the Ru and Os complexes. The pincer complexes display a superior activity with respect to the related compounds [MCl(2)(NN)(PP)] (NN = bidentate amine or pyridine ligand). The synthesis of the new complexes [MCl(CNN)(PP)] (M = Ru, 2, 4 and Os, 6, 7; PP = dppb, dppf) and [Ru(OTf)(CNN)(dppb)] (3) is also reported.  相似文献   

8.
A series of oxo-bridged diosmium complexes with tpa ligand (tpa = tris(2-pyridylmethyl)amine) are synthesized. The hydrolytic reaction of the mononuclear osmium complex [Os(III)Cl(2)(tpa)]PF(6) in aqueous solution containing a sodium carboxylate yields a μ-oxo-μ-carboxylato-diosmium(III) complex, [Os(III)(2)(μ-O)(μ-RCOO)(tpa)(2)](PF(6))(3) (R = C(3)H(7) (1), CH(3) (2), or C(6)H(5) (3)). One-electron oxidation of 1 with (NH(4))(2)Ce(IV)(NO(3))(6) gives a mixed-valent [Os(III)Os(IV)(μ-O)(μ-C(3)H(7)COO)(tpa)(2)](PF(6))(4) complex (4). A mixed-valent di-μ-oxo-diosmium complex, [Os(III)Os(IV)(μ-O)(2)(tpa)(2)](PF(6))(3) (5), is also synthesized from 1 in an aerobic alkaline solution (pH 13.5). All the complexes exhibit strong absorption bands in a visible-near-infrared region based on interactions of the osmium dπ and oxygen pπ orbitals of the Os-O-Os moiety. The X-ray crystallographic analysis of 1, 3, and 4 shows that the osmium centers take a pseudo-octahedral geometry in the μ-oxo-μ-carboxylato-diosmium core. The mixed-valent osmium(III)osmium(IV) complex 4 has a shorter osmium-oxo bond and a larger osmium-oxo-osmium angle as compared with those of the diosmium(III) complex 1 having the same bridging carboxylate. Crystal structure of 5 reveals that the two osmium ions are bridged by two oxo groups to give an Os(2)(μ-O)(2) core with the significantly short osmium-osmium distance (2.51784(7) ?), which is indicative of a direct osmium-osmium bond formation with the bond order of 1.5 (σ(2)π(2)δ(2)δ*(2)π*(1) configuration). In the electrochemical studies, the μ-oxo-μ-carboxylato-diosmium(III) complexes exhibit two reversible Os(III)Os(III)/Os(III)Os(IV) and Os(III)Os(IV)/Os(IV)Os(IV) oxidation couples and one irreversible redox wave for the Os(III)Os(III)/Os(II)Os(III) couple in CH(3)CN. The irreversible reductive process becomes reversible in CH(3)CN/H(2)O (1:1 Britton-Robinson buffer; pH 5-11), where the {1H(+)/2e(-)} transfer process is indicated by the plot of the redox potentials against the pH values of the solution of 1. Thus, the μ-oxo-μ-butyrato-diosmium(III) center undergoes proton-coupled electron transfer to yield a μ-hydroxo-μ-butyrato-diosmisum(II) species. The di(μ-oxo) complex 5 exhibits one reversible Os(III)Os(IV)/Os(IV)Os(IV) oxidation process and one reversible Os(III)Os(IV)/Os(III)Os(III) reduction process in CH(3)CN. The comproportionation constants K(com) of the Os(III)Os(IV) states for the present diosmium complexes are on the order of 10(19). The values are significantly larger when compared with those of similar oxo-bridged dimetal complexes of ruthenium and rhenium.  相似文献   

9.
Li, Yeh, and Taube in 1993 (J. Am. Chem. Soc. 1993, 115, 10384) synthesized a number of complexes which can be formally regarded as protonated Os(II) species. Some of these were paramagnetic, in contrast to the diamagnetism of the closed shell 5d(6) Os(II) ions. This intriguing phenomenon is investigated theoretically using density functional theory. The geometries, stabilities, and electronic structures of a series of six- and seven-coordinate osmium complexes were studied in gas phase and aqueous solution using the B3P86 functional, in conjunction with the isodensity-polarized continuum model of solvation. The general formula for these complexes is [Os(NH(3))(4)H(L(1)(x)())(m)()(L(2)(y)())(n)()](()(x)()(+)(y)()(+3)+), where L(1) and L(2) = H(2)O, NH(3), CH(3)OH, CH(3)CN, Cl(-), and CN(-), which could be regarded as protonated Os(II) species or hydrides of Os(IV), although according to this work the osmium-hydrogen interaction is best described as a covalent Os(III)-H bond, in which the hydrogen is near-neutral. The ground states are generally found to be singlets, with low-lying triplet excited states. Solvation tends to favor the singlet states by as much as approximately 18 kcal mol(-)(1) in the 3+ ions, an effect which is proportional to the corresponding difference in molecular volumes. To have realistic estimates of the importance of spin-orbit coupling in these systems, the spin-orbit energy corrections were computed for triplet [Os(NH(3))(4)](2+), [Os(NH(3))(4)H](3+), and [Os(NH(3))(4)H(H(2)O)](3+), along with gas-phase Os and its ions as well as [Os(H(2)O)(6)](3+). The seven-coordinate triplet-state complex [Os(NH(3))(5)H(CH(3)OH)](3+), which had been successfully isolated by Li, Yeh, and Taube, is predicted to be a stable six-coordinate complex which strongly binds to a methanol molecule in the second coordination shell. The calculations further suggest that the singlet-triplet splitting would be very small, a few kilocalories per mole at most. The geometries and the electronic structures of the complexes are interpreted and rationalized in terms of Pauling's hybridization model in conjunction with conventional ligand field theory that effectively precludes the existence of true seven-coordinate triplet-state complexes of the above formula.  相似文献   

10.
Powerful reductants [Os(II)(NH(3))(5)L](2+) (L = OH(2), CH(3)CN) can be generated upon ultraviolet excitation of relatively inert [Os(II)(NH(3))(5)(N(2))](2+) in aqueous and acetonitrile solutions. Reactions of photogenerated Os(II) complexes with methyl viologen to form methyl viologen radical cation and [Os(III)(NH(3))(5)L](3+) were monitored by transient absorption spectroscopy. Rate constants range from 4.9 × 10(4) M(-1) s(-1) in acetonitrile solution to 3.2 × 10(7) (pH 3) and 2.5 × 10(8) M(-1) s(-1) (pH 12) in aqueous media. Photogeneration of five-coordinate Os(II) complexes opens the way for mechanistic investigations of activation/reduction of CO(2) and other relatively inert molecules.  相似文献   

11.
Cheng YM  Li EY  Lee GH  Chou PT  Lin SY  Shu CF  Hwang KC  Chen YL  Song YH  Chi Y 《Inorganic chemistry》2007,46(24):10276-10286
We present the strategic design and synthesis of Os(II) complexes bearing a single pyridyl azolate pi-chromophore with an aim to attain high efficiency blue phosphorescence by way of localized transition. It turns out that our proposal of localized excitation seems to work well upon anchoring a single pi-chromophore on the Os(II) complexes such that the control of MLCT versus pipi* (or even LLCT) transitions is more straightforward. Among the titled complexes, [Os(CO)3(tfa)(fppz)] (1) and [Os(CO)3(tfa)(fbtz)] (5) (tfa=trifluoroacetate, (fppz)H=3-(trifluoromethyl)-5-(2-pyridyl)pyrazole, and (fbtz)H=3-(trifluoromethyl)-5-(4-tert-butyl-2-pyridyl)-1,2,4-triazole) give the anticipated blue phosphorescence with efficiencies of 0.26 (lambdamax=460 nm) and 0.27 (lambdamax=450 nm), respectively. For their halide analogues [Os(CO)3(X)(fppz)] (2, X=Cl; 3, X=Br; 4, X=I) and phosphine-substituted isomeric derivatives [Os(tfa)(fppz)(PPh2Me)2(CO)] (6-8), the localization of the excitation energy seems to populate at certain vibrational modes with weak bonding strength and hence an associated shallow potential energy surface to induce a facile radiationless transition. Furthermore, their ancillary ligands play an important role in fine-tuning not only the energy gap but also the emission intensity, i.e., in manifesting the radiationless transition pathways. Our results clearly show that there is always a tradeoff upon varying the parameters in an aim to optimize the hue and efficiency of phosphorescence toward blue.  相似文献   

12.
Hydrogen atom, proton and electron transfer self-exchange and cross-reaction rates have been determined for reactions of Os(IV) and Os(III) aniline and anilide complexes. Addition of an H-atom to the Os(IV) anilide TpOs(NHPh)Cl(2) (Os(IV)NHPh) gives the Os(III) aniline complex TpOs(NH(2)Ph)Cl(2) (Os(III)NH(2)Ph) with a new 66 kcal mol(-1) N-H bond. Concerted transfer of H* between Os(IV)NHPh and Os(III)NH(2)Ph is remarkably slow in MeCN-d(3), with k(ex)(H*) = (3 +/- 2) x 10(-3) M(-1) s(-1) at 298 K. This hydrogen atom transfer (HAT) reaction could also be termed proton-coupled electron transfer (PCET). Related to this HAT process are two proton transfer (PT) and two electron transfer (ET) self-exchange reactions, for instance, the ET reactions Os(IV)NHPh + Os(III)NHPh(-) and Os(IV)NH(2)Ph(+) + Os(III)NH(2)Ph. All four of these PT and ET reactions are much faster (k = 10(3)-10(5) M(-1) s(-1)) than HAT self-exchange. This is the first system where all five relevant self-exchange rates related to an HAT or PCET reaction have been measured. The slowness of concerted transfer of H* between Os(IV)NHPh and Os(III)NH(2)Ph is suggested to result not from a large intrinsic barrier but rather from a large work term for formation of the precursor complex to H* transfer and/or from significantly nonadiabatic reaction dynamics. The energetics for precursor complex formation is related to the strength of the hydrogen bond between reactants. To probe this effect further, HAT cross-reactions have been performed with sterically hindered aniline/anilide complexes and nitroxyl radical species. Positioning steric bulk near the active site retards both H* and H(+) transfer. Net H* transfer is catalyzed by trace acids and bases in both self-exchange and cross reactions, by stepwise mechanisms utilizing the fast ET and PT reactions.  相似文献   

13.
The syntheses and reactivities of sterically encumbered trans-dioxoosmium(VI) complexes containing Schiff-base ligands bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamine (H2tBu-salch) and bis(3,5-dibromosalicylidene)-1,2-cyclohexane-diamine (H2Br-salch) are described. Reactions of [Os(VI)tBu-salch)O2] (1a) and [Os(VI)(Br-salch)O2] (1b) with PPh(3), p-X-arylamines (X = NO2, CN), N2H4 x H2O, Ph2NNH2, SOCl2, CF3CO2H, Br2, and I2 under reducing conditions gave [Os(II)(Br-salch)(OPPh3)2] (2), [Os(IV)(Br-salch)(p-X-C6H4NH)2] (3), [mu-O-{Os(IV)(tBu-salch)(p-NO2C6H4NH)}2] (4), [Os(II)(Br-salch)(N2)(H2O)] (5), [Os(IV)(tBu-salch)(OH)(Cl)] (6), [Os(IV)(tBu-salch)(OH)2] (7), [Os(IV)(tBu-salch)Cl2] (8), [Os(IV)(tBu-salch)(CF3CO2)2] (9), [Os(IV)(tBu-salch)Br2] (10), and [Os(IV)(tBu-salch)I2] (11), respectively. X-ray crystal structure determinations of [Os(IV)(Br-salch)(p-NO2C6H4NH)2] (3a), [Os(IV)(Br-salch)(p-CNC6H4NH)2] (3b), 6, 8, 9, and 11 reveal the Os-N(amido) distances to be 1.965(4)-1.995(1) A for the bis(amido) complexes, Os-Cl distances of 2.333(8)-2.3495(1) A for 6 and 8, Os-O(CF3CO2) distances of 2.025(6)-2.041(6) A for 9, and Os-I distances of 2.6884(6)-2.6970(6) A for 11. Upon UV irradiation, (1S,2S)-(1a) reacted with aryl-substituted alkenes to give the corresponding epoxides in moderate yields, albeit with no enantioselectivity. The (1R,2R)-6 catalyzed cyclopropanation of a series of substituted styrenes exhibited moderate to good enantioselectivity (up to 79% ee) and moderate trans selectivity.  相似文献   

14.
The electronic absorption and circular dichroism (CD) spectra of the complexes produced by the one, two, and three electron reduction of Delta-[Ru(bipy)(3)](2+) and Delta-[Os(bipy)(3)](2+) are reported. The CD spectra give unequivocal proof that the added electrons are localized on individual bipiridine ligands and thus that the complexes are correctly formulated [M(bipy)(2)(bipy(-))](+), [M(bipy)(bipy(-))(2)](0), and [M(bipy(-))(3)](-). The absorption spectra of the triply reduced species [M(bipy(-))(3)](-) (M = Ru, Os) are compared to those of the Fe(II) and Ir(III) analogs. The luminescence spectra of the two triply reduced complexes [Ru(bipy(-))(3)](-) and [Os(bipy(-))(3)](-). are also presented. The MLCT luminescence found in the parent complexes is completely quenched and is replaced by a weak luminescence attributed to the pi(10) --> pi(7) transition of the (coordinated) [bipy](-) ion.  相似文献   

15.
Reactions between the Os(VI)-nitrido complexes, [OsVI(L2)(Cl)3(N)] (L2 = 2,2'-bipyridine (bpy) ([1]), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), and 4,7-diphenyl-1,10-phenanthroline (Ph2phen)), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) in dry CH3CN at 60 degrees C under N2 give the corresponding Os(IV)-azidoimido complexes, [OsIV(L2)(Cl)3(NN3)]- (L2 = bpy = [2]-, L2 = Me2bpy = [3]-, L2 = phen = [4]-, and L2 = Ph2phen = [5]-) as their PPN+ salts. The formulation of the N42- ligand has been substantiated by 15N-labeling, IR, and 15N NMR measurements. Hydroxylation of [2]- at Nalpha with O<--NMe3.3H2O occurs to give the Os(IV)-azidohydroxoamido complex, [OsIV(bpy)(Cl)3(N(OH)N3)] ([6]), which, when deprotonated, undergoes dinitrogen elimination to give the Os(II)-dinitrogen oxide complex, [OsII(bpy)(Cl)3(N2O)]- ([7]-). They are the first well-characterized examples of each kind of complex for Os.  相似文献   

16.
Chiu TW  Liu YH  Chi KM  Wen YS  Lu KL 《Inorganic chemistry》2005,44(18):6425-6430
Three novel triosmium complexes with unusual coordination characteristics are reported. Treatment of the hydridotriosmium cluster (mu-H)2Os3(CO)10 with CNNPPh3 in CH2Cl2 gave complexes (mu-H)Os3(CO)(10)(mu2-eta2-C(H)NNPPh3) (1) and (mu-H)Os3(CO)10(mu2-eta1-CHPPh3) (2). Complex 1 represents the first example of the existence of a coordinated phosphinazine ligand. An in-situ 1H NMR study showed that the reaction of (mu-H)2Os3(CO)10 with CNNPPh3 produced complex 1 as the initial product in 100% conversion. The latter is not stable in solution and slowly eliminates nitrogen to form an unusual ylide complex 2 in quantitative yield. The thermolysis of 2 in refluxing toluene afforded (mu-H)3Os3(CO)9(mu3-eta1-CCO2CH2Ph) (3) as a colorless compound. Complexes 1-3 were characterized by spectroscopic methods and single-crystal X-ray diffraction analysis. The interesting feature of structure 3 is the presence of a mu3-alkylidyne ligand where the symmetrically triply bridged CCO2CH2Ph fragment lies perpendicular to and above the triosmium triangle.  相似文献   

17.
A series of quasilinear dinuclear complexes incorporating ruthenium(II)- and osmium(II)-tris(2,2'-bipyridine) units has been prepared in which the individual metal-containing moieties are separated by 3,4-dibutyl-2,5-diethenylthiophene spacers and end-capped by 3,4-dibutyl-2-ethenylthiophene subunits; related ruthenium(II) and osmium(II) mononuclear complexes have also been prepared where one bpy unit is likewise end-capped by 3,4-dibutyl-2-ethenylthiophene subunits [bpy = 2,2'-bipyridine]. Overall, mononuclear species, labeled here Ru and Os, and dinuclear species, RuRu, OsOs, and RuOs, have been prepared and investigated. Their electrochemical behavior has been studied in CH3CN solvent and reveals ethenylthiophene-centered oxidations (irreversible steps at > +1.37 V vs SCE), metal-centered oxidations (reversible steps at +1.30 V vs SCE for Ru(II/III) and +0.82 V vs SCE for Os(II/III)), and successive reduction steps localized at the substituted bpy subunits. The spectroscopic studies performed for the complexes in CH3CN solvent provided optical absorption spectra associated with transitions of ligand-centered nature (LC, from the bpy and ethenylthiophene subunits) and metal-to-ligand charge-transfer nature (MLCT), with the former dominating in the visible region (400-600 nm). While the constituent ethenylthiophene-bpy ligands are strong fluorophores (fluorescence efficiency in CH2Cl2 solvent, phi em = 0.49 and 0.39, for the monomer and the dimer, respectively), only weak luminescence is observed for each complex in acetonitrile at room temperature. In particular, (i) the complexes Ru and RuRu do not emit appreciably, and (ii) the complexes Os, OsOs, and RuOs exhibit triplet emission of 3Os --> L CT character, with phi em in the range from 10-3 to 10-4. These features are rationalized on the basis of the role of nonemissive triplet energy levels, 3Th, centered on the ethenylthiophene spacer. These levels appear to lie lower in energy than the 3Ru --> L CT triplet levels, and in turn higher in energy than the 3Os --> L CT triplet levels, along the sequence 3Ru --> L CT > 3Th > 3Os --> L CT.  相似文献   

18.
Cyclometalated osmium complexes with the formulas [Os(ppy) 2(CO) 2] ( 1a, b), [Os(dfppy) 2(CO) 2] ( 2a, b), and [Os(btfppy) 2(CO) 2] ( 3a, b) have been synthesized, for which the chelating chromophores ppyH, dfppyH, and btfppyH denote 2-phenylpyridine, 2-(2,4-difluorophenyl)pyridine, and 2-(2,4-bis(trifluoromethyl)phenyl)pyridine, respectively. The isomers 1a- 3a, possessing an intrinsic C 2 rotational axis as determined by single-crystal X-ray diffraction analysis, underwent slow isomerization in solution at elevated temperature, giving the respective thermodynamic products 1b- 3b, which showed a distinctive coordination arrangement produced by a 180 degrees rotation of one cyclometalated ligand around the Os(II) metal center. In contrast to the case for 1a, b and 2a, which are inert to substitution, complexes 2b and 3b (or 3a) readily react with PPh 2Me to afford the products [Os(dfppy) 2(CO)(PPh 2Me)] ( 4) and [Os(btfppy) 2)(PPh 2Me)] ( 6), in which the incoming PPh 2Me replaced the CO located trans to the carbon atom of one cyclometalated ligand. UV-vis and emission spectra were measured, revealing the lowest excited state for all complexes as a nominally ligand-centered (3)pipi* state mixed with certain MLCT character. Introduction of the electron-withdrawing substituents on the cyclometalated chelates or replacement of one CO ligand with phosphine at the metal center increased the MLCT contribution in the first excited state, giving a broad and featureless emission with greatly enhanced quantum yields.  相似文献   

19.
The vibrational spectra of Os(CO)(6)(2+) and some of its mixed carbonyl-halide complexes, cis-Os(CO)(2)X(4)(2-), fac-Os(CO)(3)X(3)(-) and Os(CO)(5)X(+) (X=F, Cl, Br and I), have been systematically investigated by ab initio RHF and density functional B3LYP methods with LanL2DZ and SDD basis sets. The calculated vibrational frequencies of complexes Os(CO)(6)(2+), cis-Os(CO)(2)X(4)(2-) and fac-Os(CO)(3)X(3)(-) are evaluated via comparison with the experimental values. In infrared frequency region, the C-O stretching vibrational frequencies calculated at B3LYP level with two basis sets are in good agreement with the observed values with deviations less than 5%. In the far-infrared region, the B3LYP/SDD method achieved the best results with deviations less than 9% for Os-X stretching and less than 8% for Os-C stretching vibrational frequencies. The vibrational frequencies for Os(CO)(5)X(+) that have not been experimentally reported were predicted.  相似文献   

20.
A novel synthesis method is introduced for the preparation of [Os(NN)(CO)(2)X(2)] complexes (X = Cl, Br, I, and NN = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmbpy)). In the first step of this two-step synthesis, OsCl(3) is reduced in the presence of a sacrificial metal surface in an alcohol solution. The reduction reaction produces a mixture of trinuclear mixed metal complexes, which after the addition of bpy or dmbpy produce a trans(Cl)-[Os(NN)(CO)(2)Cl(2)] complex with a good 60-70% yield. The halide exchange of [Os(bpy)(CO)(2)Cl(2)] has been performed in a concentrated halidic acid (HI or HBr) solution in an autoclave, producing 30-50% of the corresponding complex. All of the synthesized trans(X)-[Os(bpy)(CO)(2)X(2)] (X = Cl, Br, I) complexes displayed a similar basic electrochemical behavior to that found in the ruthenium analog trans(Cl)-[Ru(bpy)(CO)(2)Cl(2)] studied previously, including the formation of an electroactive polymer [Os(bpy)(CO)(2)](n) during the two-electron electrochemical reduction. The absorption and emission properties of the osmium complexes were also studied. Compared to the ruthenium analogues, these osmium complexes display pronounced photoluminescence properties. The DFT calculations were made in order to determine the HOMO-LUMO gaps and to analyze the contribution of the individual osmium d-orbitals and halogen p-orbitals to the frontier orbitals of the molecules. The electrochemical and photochemical induced substitution reactions of carbonyl with the solvent molecule are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号