首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electrochemical processes at the interface between solid fluorine-conducting electrolyte LaF3(Eu2+ 0.8 mol %) and silver or bismuth electrodes in the two-electrode cell with nonpolarizable reference electrode are studied using the galvanostatic method. The anodic galvanostatic transients of LaF3: Eu2+/Ag and LaF3: Eu2+/Bi interfaces are linearized on the log(η ? ηmax), vs. t coordinates, i.e. the rate of LaF3|MF n |M electrode formation is limited by slow surface diffusion of metal adions. The initial portions of cathodic galvanostatic transients in the range of solid-electrolyte lanthanum reduction are approximated by the linear dependence of η on log(1 ? √t/τ). The plots of logI vs. 1/η are linear both for the lanthanum reduction and for silver and bismuth oxidation involving mobile fluoride ion of solid electrolyte, which is typical for two-dimensional growth of new phase.  相似文献   

2.
The reduction of immobile cations La3+ and Ce3+ in fluoride-conducting solid electrolytes (FSE) LaF3 (Eu2+ 0.8 mol %), LaF3 (Sr2+ 5 mol %), and CeF3 (Sr2+ 5 mol %) in contact with Ag, Bi, Si, La, Ce, and Sm working electrodes is studied by chronoamperometry and voltammetry with linear potential scan. Discovered is linear dependence of initial segments of potentiostatic transients of cathodic current on t 1/2 at FSE interfaces with Ag, Bi, La, Ce, and Sm. The dependence is due to diffusion-controlled instantaneous nucleation of Ln and Ce. The La3+ and Ce3+ reduction at the FSE/Ag interface is reversible in a narrow region. The reduction and oxidation of La3+ and Ce3+ (cations of the FSE rigid lattice) at the FSE/Me (Me = La, Ce and Sm, Bi, Si) interface is irreversible and involves a chemical reaction.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 662–672.Original Russian Text Copyright © 2005 by Turaeva, Kot, Urchukova, Murin.  相似文献   

3.
The effect of the reference electrode (Ag, AgCl∣KF + KCl or Sn, SnF2) on the kinetics of new phase growth at interfaces formed by LaF3:Eu2+ or CeF3:Sr2+ single crystal solid electrolytes with metal electrodes of Ag and Bi is studied by chronoamperometry and linear scan voltammetry. It is shown that when a solid-phase reference electrode is used, the current transients reflect hindrances associated with instantaneous two- or three-dimensional nucleation as well as limitations for fluoride ion diffusion in the solid electrolyte.  相似文献   

4.
Experimental results obtained in a study of the voltammetric response of an all-solid fluoride-selective electrode based on LaF3 (Eu2+ 0.8 mol %), LaF3 (Sr2+ 5 mol %) and CeF3 (Sr2+ 5 mol %) single crystals brought in contact with Ag, Bi, and Sn metal samples are presented. The method of cathodic inversion voltammetry was applied to study the reduction of La3+ and Ce3+-cations from the rigid sublattice of solid electrolytes, which determines the threshold of the electrochemical stability of a membrane. Anodic inversion voltammetry was used to investigate the characteristics of solid-phase generation of metal fluorides at the interface between the fluoride-selective electrode and metals.  相似文献   

5.
The voltammetry method with a linear potential scan is used for investigating the effect the electrode material (Ni, Co, electrodes on the basis of cobalt oxides modified with carbon) exerts on the reduction of gaseous oxygen at interfaces solid fluoride-conducting electrode LaF3:Eu2+/electrode, O2, and conjugated processes. Properties of the modified electrodes are characterized by the impedance spectroscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy methods. The oxygen reaction is irreversible at the LaF3:Eu2+|Ni (or Co) interfaces. At the interface of LaF3:Eu2+ with modified electrodes Co (C n at %), where n = 5 and 9, mobile forms of oxygen are reversible and the reduction of gaseous and chemisorbed oxygen is controlled by diffusion with different effective kinetic parameters.  相似文献   

6.
Double nitrates of Na and K having the composition 2MINO3·LnIII(NO3)3·2H2O(LnIII=Pr, Nd, Sm, Eu, Gd, Tb and Dy) and of Ni and Cu with the composition 3MII(NO3)2·2LnIII(NO3)3·24H2O (LnIII=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb and Dy) have been prepared and their -radiolytic decomposition studied up to 500 kGy. G(NO 2 ) values of K double nitrates at 230 kGy follow the order Dy3+>Pr3+=Nd3+=Sm3+>Tb3+>Eu3+> Gd3+·G(NO 2 3+ ) for NI double nitrates are higher than those of Cu double nitrates. Variation of G(NO 2 ) with cationic radii and the number of f electrons in lanthanide ion show a minimum at Eu. Thermal decomposition studies of double nitrates were also carried out.  相似文献   

7.
The kinetics of the formation of a new phase at the interface between the LaF3:Eu2+ single crystal and the (Sn, Bi, or Sb) metallic electrodes was studied using potentiostatic transient measurements and voltammetry with a linear variation of voltage. A comparison of the theoretical and experimental reduced transients that define two-dimensional instantaneous nucleation on a plot of I/I m vs. t/t m and three-dimensional growth of the instantaneous and progressive types of nucleation on a plot of I 2/I m2 vs. t/t m showed that the model was not fully consistent with the experiment. The dependence of the stationary current logI A(max) of the potentiostatic transients on 1/η during the formation of the intermediate phase on the boundaries of LaF3:Eu2+|Sn and LaF3:Eu2+|Bi was found to be linear, which corresponds to two-dimensional nucleation and growth of the new phase.  相似文献   

8.
Chemical processing such as a sol–gel method can offer interesting and useful routes for designing and synthesizing inorganic metal fluoride and oxyfluoride materials for applications in optics and photonics. In our series of studies during the last decade, a variety of fluoride materials including alkaline earth fluorides (MgF2, CaF2, SrF2 and BaF2), rare-earth fluorides (LaF3, NdF3, GdF3, etc.), rare-earth oxyfluorides (LaOF, EuOF, GdOF, Sm4O3F6, Er4O3F6, etc.) and complex fluorides (SrAlF5, BaMgF4, BaLiF3, LiGdF4, etc.) have been prepared, using trifluoroacetic acid as a fluorine source, in the form of nanoparticles, thin films and oxide/fluoride nanocomposites. They can be utilized as anti-reflective coatings, luminescent materials, VUV materials, IR materials, and so forth. This article summarizes fundamentals and possible applications of optically useful inorganic fluoride and oxyfluoride materials, with emphasis on porous single-layer anti-reflective coatings and visible photoluminescence of doped Eu3+ or Eu2+ ions. Furthermore, our recent results on LaF3:Ce3+ and LaOF:Ce3+ are originally reported here.  相似文献   

9.
The crystal structures of the complex sulfides SrLnCuS3 (Ln = Sm, Gd, Er and Lu) have been determined and refined using powder X‐ray diffraction. The crystals are found to be orthorhombic, with the structure type changing consecutively in the order BaLaCuS3 → Eu2CuS3 → KZrCuS3 as the Ln3+ ionic radius decreases in the order La/Pr → Sm/Gd → Er/Lu. Variations of the structure parameters along the series of compounds studied are analyzed, and an effect caused by crystallochemical contraction on the stabilization of the respective structure types is demonstrated.  相似文献   

10.
The electrochemical properties of single crystals of cerium fluoride alloyed with bivalent cations Sr2+, Ca2+, Ba2+, Sr2+ + Ca2+, Sr2+ + Ba2+, Ba2+ + Ca2+ and also with La3+ and La3+ + Ba2+ cations are studied using the dynamic voltammetry and impedance spectroscopy. The conductivity of symmetrical cells with Ag electrodes is determined using the method of impedance spectroscopy in the frequency range from 450 to 5 kHz at the temperatures from 20 to 100°C: for CeF3: Sr2+ (0.5 mol %) + Ba2+ (0.5 mol %), σ = σ0 exp[(?0.284 ± 0.005/kT]; for CeF3:Ca2+ (0.5 mol %) + Sr2+ (0.5 mol %), σ = σ0 exp[(?0.292 ± 0.017/kT]. The steady-state and dynamic voltammogams of symmetrical electrochemical cells with nonpolarizable reference electrodes and CeF3 single crystals alloyed with Sr2+, Ca2+, and Ba2+ bivalent cations exhibited ohmic polarization. For cells with CeF3 containing La3+ as an admixture, a hysteresis was observed, which could not be eliminated by chemical and electrochemical treatment of crystals. In the dynamic voltammetric curves of asymmetric cells with nonpolarizable and silver electrode and CeF3 crystals alloyed with Sr2+, Ca2+, and Ba2+, a range of ideal polarizability (from 0 to ~?2.7 V), and also cerium redox processes and silver fluorination-boundary regeneration were observed. In the dynamic voltammetric curves of asymmetric cells with CeF3 containing La3+ admixture, no range of ideal polarizability was observed; however, the reactions of silver fluorination and reduction of solid-electrolyte cerium were well pronounced at the corresponding potentials.  相似文献   

11.
Regularities of change in the structural parameters of EuLnCuS3 (Ln = La–Nd, Sm, Gd, Ho) at an annealing temperature of 970 and 1170 K have been established. A decrease in the Ln3+ ionic radius results in the consecutive change of structural types (STs) for the compounds: α-EuLnCuS3 (Ln = La, Ce, Pr, Nd; BaLaCuS3 ST) → β-EuLnCuS3 (Ln = Ce, Pr, Nd; Ba2MnS3 ST) → γ-EuLnCuS3 (Ln = Sm, Gd, Ho; Eu2CuS3ST). The change of structural types for EuLnCuS3 leads to a jump-like change in their unit cell parameters and the transformation of coordination polyhedra shaped as a one-capped trigonal prism LnS7 (α and β phases) into an octahedron LnS6 (γ phases). The appearance of morphotropic changes correlates with the tetrad effect.  相似文献   

12.
The separation procedure for Ag, B, Cd, Dy, Eu and Sm as impurities in Gd matrix using ICP-AES technique with an extraction chromatographic column has been developed. The spectral interference of the Gd matrix on the elements was eliminated using a chromatography technique with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) as the mobile phase and XAD-16 resin as the stationary phase. Ag+, B4O72−, and Cd2+ were eluted with 0.1 M HNO3, while rare earth ions were not. The best eluent for separating Eu and Sm in the Gd matrix was 0.3 M HNO3. The limit of quantitation for these elements was 0.6-3.0 ng mL−1. The recovery of Ag, B, and Cd was 90-104% using 0.1 M HNO3 as the eluent, while that of Eu, Gd, and Sm ranged from 100 to 102% with 0.3 M HNO3. Dy was recovered quantitatively with 4 M HNO3. The relative standard deviation of the methods for a set of three replicates was between 1.0 and 15.4% for the synthetic and standard Gd solutions. The proposed separation procedure was used to measure Ag, B, Cd, Dy, Eu, and Sm in a standard Gd solution.  相似文献   

13.
The following extraction systems have been studied: (Ce3++Eu3+) (NO3)-(EDTA, DCTA, DTPA)/TBP in n-alkane and (Ce3++Eu3+)(NO3)/DEHPA in n-alkane at concentration ratios as follows: [Ce3+]=trace –1 mol·dm–3, [Eu3+]=trace –0.1 mol·dm–3. [TBP]=(0.183–1.83) mol·dm–3, [DEHPA]=(5·10–3–0.1) mol·dm–3, [(H, Na)NO3]=(0.1–6) mol·dm–3, [Eu3+]: [EDTA, DCTA, DTPA]=11–110. The initial concentration of Eu3+ in aqueous phase in the extraction system containing a mixture of Ce3+ and Eu3+ was trace, 1% and 10% compared with the Ce3+ concentration. The distribution of the elements between the phases was observed radiometrically using141Ce,152Eu and154Eu. The results are documented by the distribution ratios DCe, DEu and separation factor =DEu/DCe as functions of variable parameters of the systems.  相似文献   

14.
Electrochemical measurements are carried out on three-phase boundaries LaF3:Eu2+/Me, oxygen gas, where Me = Ti, Be, Ta, Au and also on the boundaries of CeF3:Sr2+ with Ag-supported Ag and Bi microelectrodes by the methods of linear scan voltammetry, chronoamperometry, and cyclic voltammetry. The conditions beneficial for reduction of oxygen gas, transformations of chemisorbed oxygen, and the appearance of its mobile forms are considered. Results on the interaction of gaseous oxygen with metals in contact with LaF3:Eu2+ single crystals are generalized. The correlation is found between the oxygen reduction potential and the difference of electronegativities Δχ Me-O. The relationship is revealed between the oxygen reduction potential and the Me-Me bond energy by taking into account the structural factor f/k n, where f is the number of binding electrons and k n is the coordination number.  相似文献   

15.
A surfactant-free aqueous solution route has been established for the synthesis of LaF3:Ln3+/LaF3 core/shell nanocrystals (Ln=Ce, Tb, Nd) heated at 75 °C at ambient pressure. All the as-prepared nanocrystals with spherical shape have an average size around 20 nm, and consist of well crystallized hexagonal phases. The X-ray photoelectron spectra was used to confirm that the LaF3 shells have coated the LaF3:Ce3+, Tb3+ cores. Compared with that of the original cores under the same conditions, the emission intensity of the LaF3:Ce3+, Tb3+/LaF3 and LaF3:Nd3+/LaF3 core/shell nanocrystals increased significantly of 120% and 60%, respectively. The quantum yield of the LaF3:Ce3+, Tb3+/LaF3 core/shell nanocrystals reached about 27% in aqueous solution. These results indicate that a significant reduction of the quenching from the surface of the core nanocrystals can be obtained by the synthesis of the core/shell structures, and this method can provide more desirable lanthanide-doped nanocrystals for potential biological applications.  相似文献   

16.
In this work, we used a low temperature solvothermal method to synthesize Eu3+-doped LaF3 (LaF3:Eu3+) nanocrystals. The effect of thermal annealing on their phase structures and luminescence properties was studied. Transformation from LaF3 to LaOF was observed after the annealing, and the initial transformation process was studied using a rapid thermal annealing technique. It was found that a sufficiently high annealing temperature is required for the transformation of LaF3 to LaOF. LaOF phase started to be formed after annealing at 500 °C for as short as 5 min, and higher annealing temperatures and longer annealing time led to a larger amount of LaOF formed. With the increase of the formation of LaOF, the luminescence was greatly enhanced. Strong O2? → Eu3+ charge transfer band was present in these samples annealed at 500 °C and higher temperatures, and greatly enhanced 7F0 → 5D2 transition of Eu3+ was also observed.  相似文献   

17.
Electrochemical behavior of the interface between a LaF3 : Eu2+ single-crystal fluoride-selective membrane and Bi, Sn, Pb, Sb, and Cd metallic microelectrodes is considered with the aim to apply a fluoride-selective electrode in solid-state voltammetry. The ionization-discharge processes on the metals in air, involving mobile fluoride ions from the LaF3 membrane, were studied by cyclic voltammetry.__________Translated from Zhurnal Prikladnoi Khimii, Vol. 78, No. 2, 2005, pp. 265–272.Original Russian Text Copyright © 2005 by Turaeva, Pegova, Vasilevskii.  相似文献   

18.
Zusammenfassung Substanzen der ZusammensetzungLnCl3·3H2 Box * (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Y) und LaBr3·3 H2 Box wurden isoliert und durch Thermoanalyse, IR-Absorptionsspektren und Röntgenstreuung charakterisiert.
Compounds of the rare earth elements with -benzoin oxime
Compounds of compositionLnCl3·3 H2 Box * (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Y) and LaBr3·3H2 Box were isolated and characterized by thermoanalysis, IR spectroscopy and X-ray diffraction.
  相似文献   

19.
Uniform lanthanide orthophosphate LnPO4 (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho) nanoparticles have been systematically synthesized via a facile, fast, efficient ultrasonic irradiation of inorganic salt aqueous solution under ambient conditions without any surfactant or template. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) spectra as well as kinetic decays were employed to characterize the samples. The SEM and the TEM images show that the hexagonal structured lanthanide orthophosphate LnPO4 (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd) products have nanorod bundles morphology, while the tetragonal LnPO4 (Ln=Tb, Dy, Ho) samples prepared under the same experimental conditions are composed of nanoparticles. HRTEM micrographs and SAED results prove that these nanostructures are polycrystalline in nature. The possible formation mechanism for LnPO4 (Ln=La-Gd) nanorod bundles is proposed. Eu3+-doped LaPO4 and Tb3+-doped CePO4 samples were also prepared by using the same synthetic process, which exhibit an orange-red (Eu3+:5D0-7F1, 2, 3, 4) and green (Tb3+, 5D4-7F3, 4, 5, 6) emission, respectively.  相似文献   

20.
《Polyhedron》1988,7(1):79-81
The air and moisture stable complexes [Ln{HB(C3N2H3)3}2{MeC(O)CHC(O)Me}] (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, Lu, Y), have been prepared and characterized. The molecular structures of the compounds with Ln = Ce and Yb reveal that a substantial distortion of the coordination geometry found for Ce3+ is necessary to allow the ligand set to accommodate the smaller Yb3+ ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号