首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conjugate natural convection-conduction heat transfer in a square porous enclosure with a finite-wall thickness is studied numerically in this article. The bottom wall is heated and the upper wall is cooled while the verticals walls are kept adiabatic. The Darcy model is used in the mathematical formulation for the porous layer and the COMSOL Multiphysics software is applied to solve the dimensionless governing equations. The governing parameters considered are the Rayleigh number (100 ≤ Ra ≤ 1000), the wall to porous thermal conductivity ratio (0.44 ≤ K r ≤ 9.90) and the ratio of wall thickness to its height (0.02 ≤ D ≤ 0.4). The results are presented to show the effect of these parameters on the heat transfer and fluid flow characteristics. It is found that the number of contrarotative cells and the strength circulation of each cell can be controlled by the thickness of the bottom wall, the thermal conductivity ratio and the Rayleigh number. It is also observed that increasing either the Rayleigh number or the thermal conductivity ratio or both, and decreasing the thickness of the bounded wall can increase the average Nusselt number for the porous enclosure.  相似文献   

2.
This article reports a numerical study of double-diffusive convection in a fluid-saturated vertical porous annulus subjected to discrete heat and mass fluxes from a portion of the inner wall. The outer wall is maintained at uniform temperature and concentration, while the top and bottom walls are adiabatic and impermeable to mass transfer. The physical model for the momentum equation is formulated using the Darcy law, and the resulting governing equations are solved using an implicit finite difference technique. The influence of physical and geometrical parameters on the streamlines, isotherms, isoconcentrations, average Nusselt and Sherwood numbers has been numerically investigated in detail. The location of heat and solute source has a profound influence on the flow pattern, heat and mass transfer rates in the porous annulus. For the segment located at the bottom portion of inner wall, the flow rate is found to be higher, whereas the heat and mass transfer rates are higher when the source is placed near the middle of the inner wall. Further, the average Sherwood number increases with Lewis number, while for the average Nusselt number the effect is opposite. The average Nusselt number increases with radius ratio (λ); however, the average Sherwood number increases with radius ratio only up to λ = 5, and for λ > 5 , the average Sherwood number does not increase significantly.  相似文献   

3.
Natural convection heat transfer in an inclined fin attached square enclosure is studied both experimentally and numerically. Bottom wall of enclosure has higher temperature than that of top wall while vertical walls are adiabatic. Inclined fin has also adiabatic boundary conditions. Numerical solutions have been done by writing a computer code in Fortran platform and results are compared with Fluent commercial code and experimental method. Governing parameters are Rayleigh numbers (8.105 ≤ Ra ≤ 4 × 106) and inclination angle (30° ≤ and ≤ 120°). The temperature measurements are done by using thermocouples distributed uniformly at the wall of the enclosure. Remarkably good agreement is obtained between the predicted results and experimental data. A correlation is also developed including all effective parameters on heat transfer and fluid flow. It was observed that heat transfer can be controlled by attaching an inclined fin onto wall.  相似文献   

4.
The effect of the surface thermal radiation in tall cavities with turbulent natural convection regime was analyzed and quantified numerically. The parameters considered were: the Rayleigh number 109–1012, the aspect ratio 20, 40 and 80 and the emmisivity 0.0–1.0. The percentage contribution of the radiative surface to the total heat transfer has a maximum value of  15.19% (Ra = 109, A = 20) with emissivity equal to 1.0 and a minimum of 0.5% (Ra = 1012, A = 80) with ε* = 0.2. The average radiative Nusselt number for a fixed emissivity is independent of the Rayleigh number, but for a fixed Rayleigh number diminishes with the increase of the aspect ratio. The results indicate that the surface thermal radiation does not modify significantly the flow pattern in the cavity, just negligible effects in the bottom and top of the cavity were observed. Two different temperature patterns were observed a conductive regime Ra = 109 and a boundary layer regime Ra = 1012.  相似文献   

5.
采用局部非热平衡模型,在方腔左侧壁面温度正弦波变化、右侧壁面温度均一的边界条件下,通过SIM-PLER算法数值研究了固体骨架发热多孔介质方腔内的稳态非达西自然对流,主要探讨了不同正弦波波动参数N及方腔的高宽比M/L对方腔内自然对流与传热的影响规律。计算结果表明:正弦波温度边界使得方腔内的流场出现了复杂的变化,流体及固体区域左侧壁面附近出现了周期性的正负变化的温度场分布,左侧壁面局部Nusselt数出现了周期性的震荡现象;存在一个最佳温度波动参数N=1,此时多孔介质方腔内的整体散热量达到最大值;增加方腔高宽比会显著地削弱方腔内的自然对流传热过程,小高宽比也会在一定的程度上削弱多孔介质方腔内的对流传热。  相似文献   

6.
The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.  相似文献   

7.
The present numerical investigation deals with the size and location effects of a single isoflux discrete heater on the buoyancy induced convection in a cylindrical annulus. A discrete heater is placed at the inner wall, while the top and bottom walls as well as the unheated portions of the inner wall are kept adiabatic, and the outer wall is maintained at a lower temperature. The influence of location and size of the discrete heater on the convective flow and the corresponding heat transfer are obtained for a wide range of physical parameters. The predicted numerical results reveal that the placement of heater near the middle portion of inner wall yields a maximum heat transfer and minimum hot spots rather than placing the heater near the top and bottom portions of the inner wall. We found that the location of heater affects the rates of flow circulation and heat transfer in a complex fashion. The rate of heat transfer is an increasing function of radii ratio of the annulus. Further, we found that the rate of heat transfer and maximum temperature in the annular cavity are significantly modified by the heater length and location.  相似文献   

8.
This paper presents parametric studies on the heat transfer and fluid exchange through single-hole baffles located at the median height in bottom heated top cooled enclosures. Results indicate that when the baffle area-opening ratio is smaller than 2%, the heat transfer in the enclosure is dominated by the transport through the baffle opening. Even with such small baffle openings, increasing the enclosure aspect ratio still enhances the transport across the baffle. The characteristic length scale of flow in the enclosure is a combination of baffle opening diameter and the chamber height. The Nusselt number that characterize the heat transfer through the baffle-hole is linearly correlated with the Rayleigh number based on baffle opening diameter and the temperature difference between the bulk temperatures in the two chambers, while no effects of Prandtl numbers are observed. The mechanism of transport across the baffle opening varies from conduction dominated, combined conduction and convection, and convection dominated regimes as Rayleigh number increases.  相似文献   

9.
Natural convection flow in a differentially heated square enclosure filled with porous matrix with a solid adiabatic thin fin attached at the hot left wall is studied numerically. The Brinkman–Forchheimer-extended Darcy model is used to solve the momentum equations, in the porous medium. The numerical investigation is done through streamlines, isotherms, and heat transfer rates. A parametric study is carried out using the following parameters: Darcy number (Da) from 10−4 to 10−2, dimensionless thin fin lengths (L p) 0.3, 0.5, and 0.7, dimensionless positions (S p) 0.25, 0.5, and 0.75 with Prandtl numbers (Pr) 0.7 and 100 for Ra = 106. For Da = 10−3 and Pr = 0.7, it is observed that there is a counter clock-wise secondary flow formation around the tip of the fin for S p = 0.5 for all lengths of L p. Moreover when Da = 10−2 the secondary circulation behavior has been observed for S p = 0.25 and 0.75 and there is another circulation between the top wall and the fin that is separated from the primary circulation. However, these secondary circulations features are not observed for Pr = 100. It is also found that the average Nusselt number decreases as the length of the fin increases for all locations. However, the rate of decrease of average Nusselt number becomes slower as the location of fin moves from the bottom wall to the top wall. The overall heat transfer rate can be controlled with a suitable selection of the fin location and length.  相似文献   

10.
The free convective flow and heat transfer, within the framework of Boussinesq approximation, in an anisotropic fluid filled porous rectangular enclosure subjected to end-to-end temperature difference have been investigated using Brinkman extended non-Darcy flow model. The studies involve simultaneous consideration of hydrodynamic and thermal anisotropy. The flow and temperature fields in general are governed by, Ra, the Rayleigh number, AR, the aspect ratio of the slab, K*, the permeability ratio and k*, the thermal conductivity ratio, and Da, Darcy number. Numerical solutions employing the successive accelerated replacement (SAR) scheme have been obtained for 100 ≤ Ra ≤ 1000, 0.5 ≤ AR ≤ 5, 0.5 ≤ K* ≤ 5, 0.5 ≤ k* ≤ 5, and 0 ≤ Da ≤ 0.1. It has been found that [`(Nu)]{\overline {Nu}}, average Nusselt number increases with increase in K* and decreases as k* increases. However, the magnitude of the change in [`(Nu)]{\overline {Nu}} depends on the parameter Da, characterizing the Brinkman extended non-Darcy flow.  相似文献   

11.
Vertical enclosures with conducting fins attached to the cold wall were considered. Side walls were kept at constant but different temperatures, while horizontal top and bottom walls were insulated. A conjugate formulation was used for the mathematical formulation of the problem, and a computer program based on the control volume approach and the SIMPLE algorithm was developed. Computations were performed to investigate the effects of the fin configuration and Rayleigh number on the flow structure and heat transfer. It was observed that the heat transfer rate through an enclosure can be controlled by attaching fins to the wall(s) of the enclosure. At low Rayleigh numbers (conduction controlled regime), the heat transfer rate increases with the increasing number of fins and the fin length. However, at higher Rayleigh numbers (convection dominant regimes), the heat transfer rate can be decreased or increased by properly choosing the number of fins and the fin lengths. Received on 07 April 1997  相似文献   

12.
Effects of a conductive wall on natural convection in a square porous enclosure having internal heating at a rate proportional to a power of temperature difference is studied numerically in this article. The horizontal heating is considered, where the vertical walls heated isothermally at different temperatures while the horizontal walls are kept adiabatic. The Darcy model is used in the mathematical formulation for the porous layer and finite difference method is applied to solve the dimensionless governing equations. The governing parameters considered are the Rayleigh number (0 ???Ra ???1000), the internal heating and the local exponent parameters (0 ????? ???5), (1 ????? ???3), the wall to porous thermal conductivity ratio (0.44 ???Kr ???9.9) and the ratio of wall thickness to its width (0.02 ???D ???0.5). The results are presented to show the effect of these parameters on the fluid flow and heat transfer characteristics. It is found a strong internal heating can generate significant maximum fluid temperature more than the conductive solid wall. Increasing value thermal conductivity ratio and/or decreasing the thickness of solid wall can increase the maximum fluid temperature. It is also found that at very low Rayleigh number, the heat transfer across the porous enclosure remain stable for any values of the thermal conductivity ratio.  相似文献   

13.
We consider unsteady laminar natural convection flow of water subject to density inversion in a rectangular cavity formed by isothermal vertical walls with internal heat generation. The top and bottom horizontal walls are considered to be adiabatic, whereas the temperature of the left vertical wall is assumed to be greater than that of the right vertical wall. The equations are non-dimensionalized and are solved numerically by an upwind finite difference method together with a successive over-relaxation (SOR) technique. The effects of both heat generation and variations in the aspect ratio on the streamlines, isotherms and the rate of heat transfer from the walls of the enclosure are presented. Investigations are performed for water taking Prandtl number to be Pr=11.58 and the Rayleigh number to be Ra=105.  相似文献   

14.
In the present case, the conjugate heat transfer involving a turbulent plane offset jet is considered. The bottom wall of the solid block is maintained at an isothermal temperature higher than the jet inlet temperature. The parameters considered are the offset ratio (OR), the conductivity ratio (K), the solid slab thickness (S) and the Prandtl number (Pr). The Reynolds number considered is 15,000 because the flow becomes fully turbulent and then it becomes independent of the Reynolds number. The ranges of parameters considered are: OR = 3, 7 and 11, K = 1–1,000, S = 1–10 and Pr = 0.01–100. High Reynolds number two-equation model (k–ε) has been used for turbulence modeling. Results for the solid–fluid interface temperature, local Nusselt number, local heat flux, average Nusselt number and average heat transfer have been presented and discussed.  相似文献   

15.
This paper discusses the results of a study related to natural convection cooling of a heat source located on the bottom wall of an inclined isosceles triangular enclosure filled with a Cu water-nanofluid. The right and left walls of the enclosure are both maintained cold at constant equal temperatures, while the remaining parts of the bottom wall are insulated. The study has been carried out for a Rayleigh number in the range 104 ≤ Ra ≤ 106, for a heat source length in the range 0.2 ≤ ε ≤0.8, for a solid volume fraction in the range 0 ≤ ?≤0.06 and for an inclination angle in the range 0° ≤ δ≤45°. Results are presented in the form of streamline contours, isotherms, maximum temperature at the heat source surface and average Nusselt number. It is noticed that the addition of Cu nanoparticles enhances the heat transfer rate and therefore cooling effectiveness for all values of Rayleigh number, especially at low values of Ra. The effect of the inclination angle becomes more noticeable as one increases the value of Ra. For high Rayleigh numbers, a critical value for the inclination angle of δ = 15° is found for which the heat source maximum temperature is highest.  相似文献   

16.
This article presents a numerical study of natural convection cooling of a heat source embedded on the bottom wall of an enclosure filled with nanofluids. The top and vertical walls of the enclosure are maintained at a relatively low temperature. The transport equations for a Newtonian fluid are solved numerically with a finite volume approach using the SIMPLE algorithm. The influence of pertinent parameters such as Rayleigh number, location and geometry of the heat source, the type of nanofluid and solid volume fraction of nanoparticles on the cooling performance is studied. The results indicate that adding nanoparticles into pure water improves its cooling performance especially at low Rayleigh numbers. The type of nanoparticles and the length and location of the heat source proved to significantly affect the heat source maximum temperature.  相似文献   

17.
A steady state numerical study of combined laminar mixed convection and conduction heat transfer in a ventilated square cavity is presented. The air inlet gap is located at the bottom of a vertical glazing wall and air exits the cavity via a gap located at the top surface. Three locations for the opening at the top surface: left (case a), center (case b) and right side (case c) are considered. All the remaining surfaces are considered adiabatic. The mass, momentum and energy conservation equations were solved using the finite volume method for different Rayleigh numbers in the interval of 104 < Ra < 106 and Reynolds number in the interval of 100 < Re < 700. Temperature, flow field, and heat transfer rates are analyzed. The effect of the interaction between ambient conditions outside the glazing and the air inlet gap at the bottom for different air outlet gap positions at the top surface modifies the flow structure and temperature distribution of the air inside the cavity. The Nusselt number as a function of the Reynolds number was determined for the three cases. It was found that configuration for case (a) removes a higher amount of heat entering the cavity compared to cases (b) and (c). This is due to the short distance between the main stream and the glass wall surface. Thus, the forced airflow entering the cavity is assisted by the buoyancy forces, and most of the cavity remains at the inlet flow temperature, which should be appropriate for warm climates. These results may provide useful information about the heat transfer and fluid flow for future studies.  相似文献   

18.
A numerical study is performed to analyse heat and mass transfer phenomena due to natural convection in a composite cavity containing a fluid layer overlying a porous layer saturated with the same fluid. The flow in the porous region is modelled using Brinkman–Forchheimer-extended Darcy model that includes both the effect of macroscopic shear (Brinkman effect) and flow inertia (Forchheimer effect). The vertical walls of the two-dimensional enclosure are isothermal whilst the horizontal walls are adiabatic. The two regions are coupled by equating the velocity and stress components at the interface. The resulting coupled equations in non-dimensional form are solved by an alternating direction implicit method by transforming them into parabolic form by the addition of false transient terms. The numerical results show that the amount of fluid penetration into the porous layer depends strongly upon the Darcy, thermal and solutal Rayleigh numbers. Average Nusselt number decreases while average Sherwood number increases with an increase of the Lewis number. The transfer of heat and mass on the heated wall near the interface depends strongly on the Darcy number. Received on 11 May 1998  相似文献   

19.
Natural convection in a partially filled porous square cavity is numerically investigated using SIMPLEC method. The Brinkman-Forchheimer extended model was used to govern the flow in the porous medium region. At the porous-fluid interface, the flow boundary condition imposed is a shear stress jump, which includes both the viscous and inertial effects, together with a continuity of normal stress. The thermal boundary condition is continuity of temperature and heat flux. The results are presented with flow configurations and isotherms, local and average Nusselt number along the cold wall for different Darcy numbers from 10−1 to 10−6, porosity values from 0.2 to 0.8, Rayleigh numbers from 103 to 107, and the ratio of porous layer thickness to cavity height from 0 to 0.50. The flow pattern inside the cavity is affected with these parameters and hence the local and global heat transfer. A modified Darcy–Rayleigh number is proposed for the heat convection intensity in porous/fluid filled domains. When its value is less than unit, global heat transfer keeps unchanged. The interfacial stress jump coefficients β 1 and β 2 were varied from  −1 to +1, and their effects on the local and average Nusselt numbers, velocity and temperature profiles in the mid-width of the cavity are investigated.  相似文献   

20.
The problem of natural convection in an inclined rectangular porous layer enclosure is studied numerically. The enclosure is heated from one side and cooled from the other by a constant heat flux while the two other walls are insulated. The effect of aspect ratio, inclination angle and Rayleigh number on heat transfer is studied. It is found that the enclosure orientation has a considerable effect on the heat transfer. The negative orientation sharply inhibits the convection and consequently the heat transfer and a positive orientation maximizes the energy transfer. The maximum temperature within the porous medium can be considerably higher than that induced by pure conduction when the cavity is negatively oriented. The peak of the average Nusselt number depends on the Rayleigh number and the aspect ratio. The heat transfer between the two thermally active boundaries is sensitive to the effect of aspect ratio. For an enclosure at high or low aspect ratio, the convection is considerably decreased and the heat transfer depends mainly on conduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号