首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experimental setup was constructed to measure the thermal effect of the salt crystallization/dissolution process in building materials containing sodium sulphate. Additional heat was released/consumed during the salt crystallization/dissolution. The mathematical model of salt, moisture and energy transport concerning the salt phase change kinetics was derived and based on it the computer code was developed. To solve the set of partial differential, governing equations the finite element and finite difference methods were used. By solving the inverse problem the parameters of the rate law for brick saturated with the sodium sulphate solution were determined.  相似文献   

2.
The mutual effect between heat and mass transfer is investigated for wood dried at high temperature. A numerical model of coupled heat and mass transfer under the effect of the pressure gradient is presented. Based on the macroscopic viewpoint of continuum mechanics, the mathematical model with three independent variables (temperature, moisture content and gas pressure) is constructed. Mass transfer in the pores involves a diffusional flow driven by the gradient of moisture content, convectional flow of gaseous mixture governed by the gradient of gas pressure, the Soret effect and phase change of water. Energy gain or loss due to phase change of water is taken as the heat source. Numerical methods, the finite element method and the finite difference method are used to discretize the spatial and time dimension, respectively. A direct iteration method to solve the nonlinear problem without direct evaluation of the tangential matrix is introduced. The local convergence condition based on the contraction–mapping principle is discussed. The mathematical model is applied to a 3-D wood board dried at high temperature with the Neumann boundary conditions for both temperature and moisture content, and the Dirichlet boundary conditions for gas pressure.  相似文献   

3.
This paper presents an extension of the local second gradient model to multiphasic materials (solids particles, air, water) and including the cavitation phenomenon. This new development was made in order to model the response of saturated dilatant materials under deviatoric stress and undrained conditions and possibly, in future, the behavior of unsaturated soils. Some experiments have showed the significance of cavitation for the hydromechanical response of materials. However, to date and as far as we are aware, no attempt was made to implement the cavitation as a phase change mechanism with a control of pore pressure. The first part of the results section explores the effects of permeability, dilation angle and loading rate on the stability of shear bands during a localization event. The reasons underlying the band instability are discussed in detail, which helps defining the conditions required to maintain stability and investigating the effects of cavitation without parasite effect of materials parameters or loading rate. The model showed that, if a uniform response is obtained, cavitation triggers localization. However, in case of a localized solution, cavitation follows the formation of the shear band, with the two events being quite distinct.  相似文献   

4.
Pore pressure development in a soil specimen due to electro-osmosis under alternating current conditions is examined theoretically. Solutions to the governing equation are derived for one-dimensional flow with boundary conditions corresponding to an impervious (conventional no-flow boundary), a partially drained boundary, and a partially drained boundary with an intervening permeable zone between the boundary and the soil. These latter two boundary conditions can arise from details of pore pressure measuring systems at the specimen boundaries during laboratory experiments. An analysis of the solutions indicates that for a perfect no-flow boundary, excess pore pressures measured at an electrode consist of a steady state and rapidly-decaying transient response. The pore pressures exhibit a 45 degree phase shift relative to the applied electric current. The effect of the partially drained boundary is to reduce the peak to peak amplitude of the pore pressure and to increase the phase shift to as much as 90 degrees depending on the compressibility of the pore pressure measuring system. The effect of the impeded and partially drained boundary is to further reduce the amplitude of the pore pressures and to increase the phase shift to as much as 180 degrees depending on the relative permeability of the impeded boundary.  相似文献   

5.
The universal (i.e. independent of the constitutive equations) thermodynamic driving force for coherent interface reorientation during first-order phase transformations in solids is derived for small and finite strains. The derivation is performed for a representative volume with plane interfaces, homogeneous stresses and strains in phases and macroscopically homogeneous boundary conditions. Dissipation function for coupled interface (or multiple parallel interfaces) reorientation and propagation is derived for combined athermal and drag interface friction. The relation between the rates of single and multiple interface reorientation and propagation and the corresponding driving forces are derived using extremum principles of irreversible thermodynamics. They are used to derive complete system of equations for evolution of martensitic microstructure (consisting of austenite and a fine mixture of two martensitic variants) in a representative volume under complex thermomechanical loading. Viscous dissipation at the interface level introduces size dependence in the kinetic equation for the rate of volume fraction. General relationships for a representative volume with moving interfaces under piece-wise homogeneous boundary conditions are derived. It was found that the driving force for interface reorientation appears when macroscopically homogeneous stress or strain are prescribed, which corresponds to experiments. Boundary conditions are satisfied in an averaged way. In Part 2 of the paper [Levitas, V.I., Ozsoy, I.B., 2008. Micromechanical modeling of stress-induced phase transformations. Part 2. Computational algorithms and examples. Int. J. Plasticity (2008)], the developed theory is applied to the numerical modeling of the evolution of martensitic microstructure under three-dimensional thermomechanical loading during cubic-tetragonal and tetragonal-orthorhombic phase transformations.  相似文献   

6.
A numerical approach for moisture transport in porous materials like concrete is presented. The model considers mass balance equations for the vapour phase and the water phase in the material together with constitutive equations for the mass flows and for the exchange of mass between the two phases. History-dependent sorption behaviour is introduced by considering scanning curves between the bounding desorption and absorption curves. The method, therefore, makes it possible to calculate equilibrium water contents for arbitrary relative humidity variations at every material point considered. The scanning curves for different wetting and drying conditions are constructed by using third degree polynomial expressions. The three coefficients describing the scanning curves is determined for each wetting and drying case by assuming a relation between the slope of boundary sorption curve and the scanning curve at the point where the moisture response enters the scanning domain. Furthermore, assuming that the slope of the scanning curve is the same as the boundary curve at the junction point, that is, at the point where the scanning curve hits the boundary curve once leaving the scanning domain, a complete cyclic behaviour can be considered. A finite element approach is described, which is capable of solving the non-linear coupled equation system. The numerical calculation is based on a Taylor expansion of the residual of the stated problem together with the establishment of a Newton–Raphson equilibrium iteration scheme within the time steps. Examples are presented illustrating the performance and potential of the model. Two different types of measurements on moisture content profiles in concrete are used to verify the relevance of the novel proposed model for moisture transport and sorption. It is shown that a good match between experimental results and model predictions can be obtained by fitting the included material constants and parameters.  相似文献   

7.
对含液颗粒材料流固耦合分析建议了一个基于离散颗粒模型与特征线SPH法的显式拉格朗日-欧拉无网格方案。在已有的用以模拟固体颗粒集合体的离散颗粒模型[1]基础上,将颗粒间间隙内的流体模型化为连续介质,对其提出并推导了基于特征线的SPH法。数值例题显示了所建议方案在模拟颗粒材料与间隙流相互作用的能力和性能以及间隙流体对颗粒结构承载能力及变形的影响。  相似文献   

8.
赵铮  李晓杰  陶钢 《爆炸与冲击》2009,29(3):289-294
爆炸压实过程中多孔体的孔隙闭合程度对压实效果起着决定性作用。利用LS-DYNA有限元程序,对无氧铜中的圆形孔隙塌缩过程进行了数值模拟。根据模拟结果分析得出,在6 GPa的冲击压力下,孔隙闭合时不同边界区域会发生爆炸焊接和射流侵彻,这2种结合机理可以使材料结合更牢固,提高材料的致密度和机械强度,实现高质量的爆炸压实。  相似文献   

9.
Evolution of Phase Boundaries by Configurational Forces   总被引:1,自引:0,他引:1  
An initial boundary value problem modeling the evolution of phase interfaces in materials showing martensitic transformations is studied. The model, which is derived rigorously from a sharp interface model with phase interfaces driven by configurational forces and which generalizes that model, consists of the equations of linear elasticity coupled with a nonlinear partial differential equation of hyperbolic character governing the evolution of the order parameter. It is proved that in one space dimension, global solutions exist for which the order parameter belongs to the space of functions of bounded variation. Other models for interface motion by martensitic transformations and by interface diffusion are suggested.  相似文献   

10.
This paper reports experimental results that demonstrate petrophysical and capillary characteristics of compacted salt. The measured data include porosity, gas permeability, pore size distribution, specific surface area, and gas-brine breakthrough and capillary pressure. Salt samples employed in the experiments were prepared by compacting sodium chloride granulates at high stresses for several hours. They represent an intermediate consolidation stage of crushed salt under in-situ conditions. The porosity and permeability of compacted salt showed similar trends to those expected in backfilled regions of waste repositories excavated in salt rock. The correlation between the measured porosity and permeability seems to be independent of the compaction parameters for the range examined in this study. The correlation also shows a different behaviour from that of rock salt. The data of all petrophysical properties show that the pore structure of compacted salt can be better characterized by fracture permeability models rather than capillary bundle ones. Simple creep tests, conducted on the fully-brine-saturated compacted salt samples, yielded similar strain rates to those obtained by a steady-state mechanical model developed from the tests on fully brine-saturated granular salt. A modified procedure is proposed for the evaluation of restored-state capillary pressure data influenced by the material creep. The characteristic parameters for the capillary behaviour of compacted salt are determined by matching the Brooks-Corey and van Genuchten models with the measured data. The Leverett functions determined with different methods agree well.  相似文献   

11.
多孔介质干燥导致热质耦合传输过程。本文基于连续介质力学的宏观尺度,对多孔介质的热、湿和气三者耦合迁移进行数值模拟,研究压力梯度对热质传输的影响。多孔介质传质机理主要为水汽和空气的对流和扩散传输、吸附水在含湿量梯度作用下的自由扩散和其在温度梯度即Soret效应驱动下的流动。采用Galerkin加权余量的有限元方法,提出了...  相似文献   

12.
13.
On the basis of the finite element analysis, the elastic wave propagation in cellular structures is investigated using the symplectic algorithm. The variation principle is first applied to obtain the dual variables and the wave propagation problem is then transformed into two-dimensional (2D) symplectic eigenvalue problems, where the extended Wittrick-Williams algorithm is used to ensure that no phase propagation eigenvalues are missed during computation. Three typical cellular structures, square, triangle and hexagon, are introduced to illustrate the unique feature of the symplectic algorithm in higher-frequency calculation, which is due to the conserved properties of the structure-preserving symplectic algorithm. On the basis of the dispersion relations and phase constant surface analysis, the band structure is shown to be insensitive to the material type at lower frequencies, however, much more related at higher frequencies. This paper also demonstrates how the boundary conditions adopted in the finite element modeling process and the structures' configurations affect the band structures. The hexagonal cells are demonstrated to be more efficient for sound insulation at higher frequencies, while the triangular cells are preferred at lower frequencies. No complete band gaps are observed for the square cells with fixed-end boundary conditions. The analysis of phase constant surfaces guides the design of 2D cellular structures where waves at certain frequencies do not propagate in specified directions. The findings from the present study will provide invaluable guidelines for the future application of cellular structures in sound insulation.  相似文献   

14.
A new approach for modeling multivariant martensitic phase transitions (PT) and martensitic microstructure (MM) in elastic materials is proposed. It is based on a thermomechanical model for PT that includes strain softening and the corresponding strain localization during PT. Mesh sensitivity in numerical simulations is avoided by using rate-dependent constitutive equations in the model. Due to strain softening, a microstructure comprised of pure martensitic and austenitic domains separated by narrow transition zones is obtained as the solution of the corresponding boundary value problem. In contrast to Landau-Ginzburg models, which are limited in practice to nanoscale specimens, this new phase field model is valid for scales greater than 100 nm and without upper bound. A finite element algorithm for the solution of elastic problems with multivariant martensitic PT is developed and implemented into the software ABAQUS. Simulated microstructures in elastic single crystals and polycrystals under uniaxial loading are in qualitative agreement with those observed experimentally.  相似文献   

15.
The application of the finite element method to multiphase flow problems with interphase mass and heat transfer is described. A general forinulation is used that determines the position of the interfacial boundary and allows for multiple solvents, differential volatilities and concentration- and temperature-dependent thermophysical properties. Species phase change and the dramatic volume change that acompanies interphase mass transfer make implementation of the theory challening, since these events lead to discontinuous velocities and concentrations at phase boundaries. These discontinuities are especially large in processes involving rapid evaporation or condensation. As examples we examine the effects of rapid drying on film and fibre formation of sol--gel materials, which are often laden with volatile species.  相似文献   

16.
A direct method for an accurate and rapid evaluation of a varying salt diffusion coefficient, \(D\) , from experimental data is proposed for a coupled water and salt transport in porous materials. The evaluation uses data on the moisture and salt concentration profiles and is based on a formula obtained from the Boltzmann-Matano method. The coupled transport is described by the diffusion-advection model of Bear and Bachmat. A simple expression for \(D\) in the center of the concentration interval is deduced from the formula to provide a rapid estimate on \(D\) . Possible extensions of this analytical approach are pointed out, suggesting that it can serve as a convenient general tool in engineering calculations. The theoretical results are applied to a laboratory experiment in which a coupled moisture and chloride transport had been investigated in a lime plaster, and the chloride diffusion coefficient had been obtained numerically in dependence on the chloride concentration. The agreement with the numerical results is shown to be rather good, except at low concentrations where our analytical results should be more reliable. It is also shown that the unusually high value of the calculated chloride diffusion coefficient—about three orders of magnitude higher than for free chloride ions in water—cannot be explained by possible inaccuracies in the measurements and/or numerical calculations. The reason is that changes in the measured profiles’ data could cause a change in \(D\) of just the same order of magnitude. This shows that, besides diffusion and advection, additional mechanisms take part in the considered chloride transport.  相似文献   

17.
The paper presents a new method to calculate the moisture concentration field induced by cyclical environmental conditions in thick laminated pipes. The solution which is obtained is composed of a transient solution over the interior of the pipe wall and a fluctuating solution within two thin regions, close to the inner and outer lateral surfaces of the pipe wall. The thickness of these two regions is depending on both materials and frequency conditions. The transient solution is determined by using an analytical method based on the solving in average of the field equation. The fluctuating solution is derived from a finite difference scheme. It is shown that after some period of time the transient solution tends towards a permanent time independent solution. In that case, the fluctuating solution becomes a periodic solution which is conditioned by the cyclical boundary conditions. Finally, the effect of particular cyclical conditions on the moisture concentration in thick wall pipes will be tackled.  相似文献   

18.
Stability conditions for a nonstationary automatic-control system of variable structure in sliding mode are established. The controller of the system has feedback-switched filters functioning together with the shaper and actuator. The nonstationary parameters of the system vary within given ranges, at a finite rate, under appropriate control laws, with adjustment for the error signal, its derivatives of finite order, and all variable parameters of the filter. The parameters of the switching hyperplane remain constant. This approach to stability analysis is based on the existence conditions for the sliding mode at the switching boundary in the phase space. The general stability and instability criteria are applied to nonstationary automatic filtered-control systems of variable structure of the third order __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 10, pp. 116–134, October 2006.  相似文献   

19.
A real-space phase field model based on the time-dependent Ginzburg–Landau (TDGL) equation is developed to predict the domain evolution of ferromagnetic materials. The phase field model stems from a thermodynamic theory of ferromagnetic materials which employs the strain and magnetization as independent variables. The phase field equations are shown to reduce to the common micromagnetic model when the magnetostriction is absent and the magnitude of magnetization is constant. The strain and magnetization in the equilibrium state are obtained simultaneously by solving the phase field equations via a nonlinear finite element method. The finite-element based phase field model is applicable for the domain evolution of ferromagnetic materials with arbitrary geometries and boundary conditions. The evolution of magnetization domains in ferromagnetic thin film subjected to external stresses and magnetic fields are simulated and the magnetoelastic coupling behavior is investigated. Phase field simulations show that the magnetization vectors form a single magnetic vortex in ferromagnetic disks and rings. The configuration and size of the simulated magnetization vortex are in agreement with the experimental observation, suggesting that the phase field model is a powerful tool for the domain evolution of ferromagnetic materials.  相似文献   

20.
In the present work, graded finite element and boundary element methods capable of modeling behaviors of structures made of nonhomogeneous functionally graded materials (FGMs) composed of two constituent phases are presented. A numerical implementation of Somigliana’s identity in two-dimensional displacement fields of the isotropic nonhomogeneous problems is presented using the graded elements. Based on the constitutive and governing equations and the weighted residual technique, effective boundary element formulations are implemented for elastic nonhomogeneous isotropic solid models. Results of the finite element method are derived based on a Rayleigh–Ritz energy formulation. The heterogeneous structures are made of combined ceramic–metal materials, in which the material properties vary continuously along the in-plane or thickness directions according to a power law. To verify the present work, three numerical examples are provided in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号