首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 904 毫秒
1.
A highly sensitive, simple and rapid stability-indicating spectrofluorimetric method was developed for the determination of metolazone (MET) and xipamide (XPM) in their tablets. The proposed method is based on the measurement of the native fluorescence of MET in methanol at 437 nm after excitation at 238 nm and XPM in alkaline methanolic solution at 400 nm after excitation at 255 nm. The fluorescence–concentration plots were rectilinear over the range of 2.0– 20.0 ng/mL for MET and 0.2– 2.0 μg/mL for XPM, with lower detection limits (LOD) of 0.35 ng/mL and 0.02 μg/mL and a lower quantification limit (LOQ) of 1.05 ng/mL and 0.07 μg/mL for MET and XPM, respectively. The method was successfully applied to the analysis of MET and XPM in their commercial tablets and the results were in good agreement with those obtained using the official and comparison methods, respectively. Furthermore, content uniformity testing of the studied pharmaceutical tablets was also conducted. The application of the proposed method was extended to stability studies of MET and XPM after exposure to different forced degradation conditions, such as acidic, alkaline, oxidative and photolytic degradation conditions, according to ICH Guidelines. Moreover, the method was utilized to investigate the kinetics of the alkaline, acidic and photolytic degradation of MET. The apparent first-order rate constants and half-life times were calculated. Proposals for the degradation pathways for both MET and XPM were postulated.  相似文献   

2.
A highly sensitive, simple and rapid spectrofluorimetric method was developed for the determination of Terbinafine HCl (TRH) and linezolid (LNZ) in their pharmaceutical formulations. The proposed method is based on measuring the native fluorescence of the studied drugs in water at 336 nm after excitation at 275 nm for TRH and 375 nm after excitation at 254 nm for LNZ. The fluorescence–concentration plots were rectilinear over the range of 0.02–0.15 μg/mL for TRH and 0.5–5.0 μg/mL for LNZ. With lower detection limits of 3.0 and 110.0 ng/mL and a lower quantification limit of 9.0 and 320.0 ng/mL for TRH and LNZ, respectively. The method was successfully applied to the analysis of TRH in its commercial tablets, cream, gel and spray formulations and the results were in good agreement with those obtained with the official method. In addition the method was also applied to the analysis of LNZ in its capsule and I.V solution and the results were in good agreement with those obtained with the comparison method. The effect of sensitizers was studied. The method was extended to the determination of the studied drugs in spiked human plasma and the results were satisfactory.  相似文献   

3.
A simple, sensitive and rapid spectrofluorimetric method for determination of itopride hydrochloride in raw material and tablets has been developed. The proposed method is based on the measurement of the native fluorescence of the drug in water at 363 nm after excitation at 255 nm. The relative fluorescence intensity-concentration plot was rectilinear over the range of 0.1–2 μg/mL (2.5?×?10?7–5.06?×?10?6 mole/L), with good correlation (r?=?0.9999), limit of detection of 0.015 μg/mL and a lower limit of quantification of 0.045 μg/mL. The described method was successfully applied for the determination of itopride hydrochloride in its commercial tablets with average percentage recovery of 100.11?±?0.32 without interference from common excipients. Additionally, the proposed method can be applied for determination of itopride in combined tablets with rabeprazole or pantoprazole without prior separation. The method was extended to stability study of itopride. The drug was exposed to acidic, alkaline, oxidative and photolytic degradation according to ICH guidelines. Moreover, the method was utilized to investigate the kinetics of the alkaline, acidic and oxidative degradation of the drug. A proposal for the degradation pathways was postulated.  相似文献   

4.
A rapid, simple, and highly sensitive second-derivative synchronous fluorimetric (SDSF) method has been developed for the simultaneous analysis of binary mixtures of fluphenazine hydrochloride (FLZ) and nortriptyline hydrochloride (NTP) in their co-formulated tablets. The method is based upon measurement of the native fluorescence of these drugs at constant wavelength difference (Δλ)?=?120 nm in acetic acid. The different experimental parameters affecting the fluorescence intensity of the studied drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the range of 0.25–3.0 and 1–10 μg/ml for FLZ and NTP respectively, with lower detection limits (LOD) of 0.05 and 0.18 μg/ml and quantitation limits of 0.15 and 0.53 μg/ml for FLZ and NTP respectively. The proposed method was successfully applied for the determination of the studied compounds in their synthetic mixtures and in commercial co-formulated tablets. The results obtained were in good agreement with those obtained by the reference methods.  相似文献   

5.
6.
Amitriptyline.HCl (AMI) and clomipramine.HCl (CMI) react with eosin Y (EY) in pH 3.8 NaAc-AcH buffer solution to form ion association complex which results in quenching of fluorescence of EY and appearance of a new resonance Rayleigh scattering (RSS) spectrum at 620 nm. The spectral characteristics of absorption, fluorescence and RSS spectra have been investigated. The factors influencing the reaction were studied and optimum conditions for the reaction have been determined. Based on fluorescence quenching, a simple and sensitive spectrofluorimetric method for determination of AMI and CMI has been developed. The fluorescence quenching intensity was measured at 550 nm using an excitation wavelength of 310 nm. The calibration graph was found to be rectilinear in the range 0.08–2.0 μg?mL?1 with detection limit of 0.017 μg?mL?1 for AMI and 0.06–2.0 μg?mL?1 with detection limit of 0.015 μg?mL?1 for CMI. The method can be satisfactorily applied to the determination of AMI and CMI in tablets without interference from commonly occurring exicipients. The recovery and RSD values obtained indicate good accuracy and precision of the method. The mechanism of the reaction and fluorescence quenching has also been discussed.  相似文献   

7.
Synchronous spectrofluorimetric methods could be successfully adopted for simultaneous determination of Octinoxate (OMC), Avobenzone (AVO), Octyltriazone (OT), and Phenyl benzimidazole sulfonic acid (PBSA) in moisturizing sunscreen lotion, utilizing β-CD as fluorescence enhancer, and determination of Avobenzone (AVO), Homosalate, Tinosorb M and Phenyl benzimidazole sulfonic acid (PBSA) in presence of Octocrylene (OCR) in whitening sunscreen cream, using micellar medium of Sodium Dodecyl Sulfate (SDS) to enhance fluorescence intensity. For first product, zero order synchronous spectrofluorimetric method was used for determination of OMC and AVO, and derivative synchronous spectrofluorimetric technique was utilized for OT and PBSA in quaternary mixture. Linear calibration curves were obtained in a concentration range of 0.5–8 μg mL??1 for OMC and AVO, and in range of 0.05–3 μg mL??1 for OT and 0.001–5 μg mL??1 for PBSA, by measuring the fluorescence at 370, 405, 333.2 and 340.6 nm, respectively. For second product, first derivative synchronous fluorescence method was used for each UV-filter. A linear calibration curves were obtained in a concentration range of 0.5–8 μg mL??1 for AVO, in range of 0.1–8 μg mL??1 for Homosalate, 2–10 μg mL??1 for Tinosorb M and 0.001–5 μg mL??1 for PBSA, by measuring the fluorescence at 409.8, 373, 307.2 and 316.8 nm, respectively. The detection limits are well below the maximum admissible concentration. The proposed methods were validated according to ICH guidelines and successfully applied to determine sunscreens in pure form and in Cosmeceutical formulations. All the results obtained were compared with those of published methods, where no significant difference was observed.  相似文献   

8.
A simple and sensitive spectrofluorimetric method was developed for the determination of ezetimibe in its pharmaceutical formulations. The proposed method is based on investigation of the fluorescence spectral behavior of ezetimibe in sodium dodecyl sulfate (SDS) micellar system. In aqueous solution of acetate buffer pH 5.0, the fluorescence intensity of ezetimibe was greatly enhanced, 200% enhancement, in the presence of SDS. The fluorescence intensity of ezetimibe was measured at 380 nm after excitation at 268 nm. The fluorescence-concentration plot was rectilinear over the range of 0.03–3.0 μg/mL with lower detection limit of 3.08 × 10−3 μg/mL. The method was successfully applied to the analysis of ezetimibe in its commercial tablets; the results were in good agreement with those obtained with the reported method. The application of the proposed method was extended to the stability studies of ezetimibe after exposure to different forced degradation conditions, such as acidic, alkaline, photo and oxidative conditions, according to ICH guidelines.  相似文献   

9.
Two simple, sensitive, rapid, economic and validated methods, namely reversed phase liquid chromatography (method Ι) and third derivative synchronous fluorescence spectroscopy (method ΙΙ) have been developed for the simultaneous determination of rabeprazole sodium and domperidone in their laboratory prepared mixture after derivatization with 4-Chloro-7-nitrobenzofurazan. Reversed phase chromatography was conducted using a Zorbax® SB-Phenyl column (250.0 mm × 4.6 mm id) combined with a guard column at ambient temperature with fluorimetric detection at 540 nm after excitation at 483 nm. A mobile phase composed of a mixture of distilled water with methanol and acetonitrile in a ratio of 50:20:30 adjusted pH to 4 has been used at a flow rate of 1 mL/min. Sharp well resolved peaks were obtained for domperidone and rabeprazole sodium with retention times of 5.5 and 6.4 min respectively. While in method ΙΙ, the third-derivative spectra were estimated at 507 and 436 nm for rabeprazole sodium and domperidone respectively. Linearity ranges for rabeprazole sodium and domperidone respectively in both methods were found to be 0.15–2.0 and 0.1–1.5 μg/mL. The proposed methods were successfully applied for the analysis of the two compounds in their binary mixtures, and laboratory prepared tablets. The obtained results were favorably compared with those obtained by the comparison method. Furthermore, detailed validation procedure was also conducted.  相似文献   

10.
11.
Two highly sensitive, rapid, simple, economic and validated spectrofluorimetric methods have been developed for determination of Topiramate and Levetiracetam in pharmaceutical tablets and in human plasma. Topiramate and Levetiracetam were determined separately by derivatization using 4-Chloro-7-nitrobenzofuran-2-oxo-1,3-diazole (NBD-Cl) and measured spectrofluorimetrically. The Relative fluorescence intensities were measured at λem/ex of 547/465 nm and 551/465 nm for Topiramate and Levetiracetam, respectively. While a binary mixture of Topiramate and Levetiracetam were determined by the fourth derivative synchronous fluorescence measurement after their reaction with NBD-Cl. In this method, the fourth derivative synchronous spectra were estimated as peak to peak measurement at 493–497 and 490.5–495 nm corresponding with zero-contribution of Levetiracetam and Topiramate, respectively. Linearity ranges for Topiramate and Levetiracetam in both methods were found to be 0.15–1.2 and 0.2–1.5 μg/mL, respectively. The different experimental parameters affecting the fluorescence of the two drugs were carefully studied and optimized. The proposed methods were validated in terms of linearity, accuracy, precision, limits of detection and quantification and other aspects of analytical validation. The proposed methods were successfully applied for the determination of the investigated drugs in human plasma samples obtained from healthy volunteers after single oral administration of the two drugs.  相似文献   

12.
A simple, accurate, sensitive, and validated method was developed for the spectrofluorometric determination of cephalexin. The method involves the reaction of cephalexin with 2‐cyanoacetamide in presence of 33% ammonia solution. The formed fluorescent product exhibited maximum fluorescence intensity at λ 439 nm, after excitation at λ 339 nm. Different experimental parameters affecting the derivatization reaction were carefully studied and incorporated in the procedure. Under the described conditions, the proposed method was linear over the concentration range 0.04–0.4 µg/mL. The average percent found was 99.6±0.9%. The LOD was 7.76 ng/mL. The proposed method was applied for determination of cephalexin in pharmaceutical preparations as well as in spiked human urine. A mechanism of the reaction is postulated.  相似文献   

13.
A simple, sensitive, and accurate spectrofluorimetric method was developed for the determination of citalopram in bulk and pharmaceutical preparations. The method is based on the enhancement of the weak fluorescence signal (FL) of the Tb (III)-citalopram system in the presence of silver nanoparticles. Fluorescence intensities were measured at 555 nm after excitation at 281 nm. Prepared silver nanoparticles (AgNPs) were characterized by UV-Visible spectra and transmission electron microscopy (TEM). Various factors affecting the formation of citalopram-Tb (III)-AgNPs complexes were studied and optimized. The fluorescence intensity versus concentration plot was linear over the range 0.02–14 μg?mL?1, with an excellent correlation coefficient of 0.9978. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 7.15?×?10?6?μg?mL?1 and 2.38?×?10?5?μg?mL?1 respectively. The proposed method was found to have good reproducibility with a relative standard deviation of 3.66 % (n?=?6). The interference effects of common excipients found in pharmaceutical preparations were studied. The developed method was validated statistically by performing recoveries studies and successfully applied for the assay of citalopram in bulk powder and pharmaceutical preparations. Percent recoveries were found to range from 98.98 % to 100.97 % for bulk powder and from 96.57 % to 101.77 % for pharmaceutical preparations.  相似文献   

14.
A rapid, simple and highly sensitive first derivative synchronous fluorometric method has been developed for the simultaneous analysis of binary mixture of sulpiride (SUL) and mebeverine hydrochloride (MEB). The method is based upon measurement of the synchronous fluorescence intensity of these drugs at ∆λ = 100 nm in water. The different experimental parameters affecting the fluorescence of the two drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the range of 0.05–1 μg/mL and 0.2–3.2 μg/mL for SUL and MEB respectively with lower detection limits (LOD) of 0.006 and 0.01 μg/mL and quantification limits (LOQ) of 0.0.02 and 0.05 μg/mL for SUL and MEB, respectively. The proposed method was successfully applied for the determination of the two compounds in synthetic mixtures and in commercial tablets. The high sensitivity attained by the proposed method allowed the determination of both of SUL and MEB metabolite (veratic acid) in real human plasma samples applying second derivative synchronous fluorometric technique. The mean% recoveries (n = 3) for both MEB metabolite (veratic acid) and SUL were 99.82 ± 2.53 and 98.84 ± 6.20 for spiked human plasma respectively, while for real human plasma, the mean% recoveries (n = 3) were 91.49 ± 4.25 and 91.36 ± 8.46 respectively.  相似文献   

15.
A simple and highly sensitive spectrofluorimetric method was developed and validated for determination of the antidiabetic agent repaglinide (RG) in tablets. The proposed method is based on measurement of the native fluorescence of RG in 0.1 M H(2)SO(4)/methanol medium at 360 nm after excitation at 243 nm. The method showed a linear dependence of the relative fluorescence intensity on drug concentration over the range of 0.02-0.50 μg mL(-1) with lower detection limit of 6.0 ng mL(-1) and lower quantification limit of 18 ng mL(-1). The method was successfully applied for determination of RG in different tablets and the obtained results were in good agreement with those obtained by the official method. The proposed method was extended to investigate the kinetics of oxidative degradation of the drug. A proposal for the degradation pathway was postulated.  相似文献   

16.
A simple, sensitive and rapid spectrofluorometric method for determination of methocarbamol in pharmaceutical formulations and spiked human plasma has been developed. The proposed method is based on the measurement of the native fluorescence of methocarbamol in methanol at 313 nm after excitation at 277 nm. The relative fluorescence intensity-concentration plot was rectilinear over the range of 0.05–2.0 μg/mL, with good correlation (r = 0.9999), limit of detection of 0.007 μg/ mL and a lower limit of quantification of 0.022 μg/ mL. The described method was successfully applied for the determination of methocarbamol in its tablets without interference from co-formulated drugs, such as aspirin, diclofenac, paracetamol and ibuprofen, The results obtained were in good agreement with those obtained using the official method (USP 30).The high sensitivity of the method allowed the determination of the studied drug in spiked human plasma with average percentage recovery of 99.42 ± 3.84.  相似文献   

17.
The supramolecular interaction of ofloxacin (Oflo) and methyl β-cyclodextrin (Mβ-CD) has been examined by UV–vis, IR and fluorescence spectroscopy. The formation of inclusion complex has been confirmed based on the changes of the spectral properties. The results showed that Mβ-CD reacted with Oflo to form an inclusion complex. The Oflo and Mβ-CD complex formed a host-guest complex in 1:1 stoichiometry and inclusion constant (K?=?7.8?×?10?3 L mol?1) was ascertained by the typical double reciprocal plots. Furthermore, the thermodynamic parameters (?H°, ?S° and ?G°) associated with the inclusion process were also determined. In addition, solid inclusion complex was synthesized. Based on the significant enhancement of the fluorescence intensity of Oflo produced through complex formation, a simple, accurate, rapid and highly sensitive spectrofluorometric method for the determination of Oflo in pharmaceutical formulation was developed. The measurement of relative fluorescence intensity was carried out at 497 nm with excitation at 296 nm. The factors affecting the inclusion complex formation were studied and optimized. Under the optimum reaction conditions, linear relationships with good correlation coefficients (0.9995) were in the concentration range of 50–350 ng/mL for spectrofluorimetry. The limit of detection (LOD) was 11.5 ng/mL. The proposed method was successfully applied to the analysis of Oflo in pharmaceutical preparation.  相似文献   

18.
This study was designed to develop a highly selective and sensitive method towards fluorimetric sensing of cysteine (Cys) in water and human serum by using copper nanocluster. The Cys-CuNCs were characterized by scanning electron microscopy (SEM), FTIR, fluorescence and UV–Vis analysis. Spectroscopic evidences showed different intensities that were attributed to the different size of Cys-CuNCs. Enhancement in fluorescence intensity of copper nanoclusters with an increase in concentration of cysteine may enable them to be good candidates in detection systems. Selective recognition of cysteine in aqueous and serum samples was achieved during the formation of various copper nanoclusters (Cys-CuNCs) with different size. Under the optimized conditions, two linear range of the nanobiosensor for cysteine were between the 5 μM to 50 μM with detection limit of 2.4 μM and between 60 μM to 500 μM with detection limit of 55 μM. Fluorescence intensity increased with addition of cysteine concentration from 5 to 50 μM. The proposed low-cost nanobiosensor exhibited high reproducibility and good selectivity. It has been used also for the determination of cysteine in human serum samples with recoveries of 97–103 % and RSDs of 1.8–3.6 %  相似文献   

19.
A simple and sensitive spectrofluorimetric method has been developed and validated for determination of oseltamivir phosphate (OSP). The proposed method is based on condensation reaction of the primary amino group of OSP with ninhydrin and phenylacetaldehyde in buffered medium (pH 6.5). The formed yellow fluorescent product exhibits excitation and emission maxima at 390 and 460 nm, respectively. The selectivity improvement of our proposed method is based on the water insolubility of the oseltamivir carboxylic acid (OSC) the active metabolite of OSP, which contains the same primary amino group as OSP but cannot, condensed with ninhydrin and phenylacetaldehyde reagents. The different experimental parameters affecting the formation and stability of the reaction product were carefully studied and optimized. The fluorescence intensity concentration plot is rectilinear in the range of 2–15 μg ml?1 with detection and quantitation limits of 0.32 and 0.98 μg ml?1, respectively. The proposed method was successfully applied for determination of OSP in commercial capsules, suspension and spiked human plasma with good percentage recovery. In addition, the developed procedure was extended to study the stability of OSP under different stress conditions; including acid and alkali hydrolysis, oxidation, photolysis, and thermal degradation. Furthermore, the kinetic of alkaline and acidic degradation of the cited drug were investigated. The apparent first order degradation rate constants were 0.258 and 0.318 K h?1 with half times of 2.68 and 2.17 h, for acidic and alkaline degradation, respectively.  相似文献   

20.
In this work, water dispersible fluorescent carbon nanocrystals (NCs) were synthesized by a simple, green and low cost hydrothermal method using Syzygium cumini (jamun) as a carbon source at 180 °C for 6 h. The average size of carbon NCs was found to be 2.1 ± 0.5 nm and shown bright blue fluorescence when excited at 365 nm under UV lamp. The carbon NCs were characterized by spectroscopic (UV-visible and fluorescence, Fourier transform infrared and dynamic light scattering) and high resolution transmission electron microscopic techniques. The quantum yield of carbon NCs was found to be ~5.9 % at 438 nm emission wavelength when excited at 360 nm. It was noticed that none of the metal ions quenched the fluorescence intensity of carbon NCs at 438 nm except for Fe3+, indicating the formation of Fe3+ ion-carbon NCs complexes. The linear range was observed in the concentration range of 0.01–100 μM with the corresponding detection limits of 0.001 μM, respectively. Furthermore, the carbon NCs were used as probes for imaging of fungal (Fusarium avenaceum) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号