首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple collision model for multiple collisions occurring in quadrupole type mass spectrometers was derived and tested with leucine enkaphalin a common mass spectrometric standard with well-characterized properties. Implementation of the collision model and Rice-Ramsperger-Kassel-Marcus (RRKM) algorithm into a spreadsheet software allowed a good fitting of the calculated data to the experimental survival yield (SY) versus collision energy curve. In addition, fitting also ensured to estimate the efficiencies of the kinetic to internal energy conversion for Leucine enkephalin in quadrupole-time-of-flight and triple quadrupole instruments. It was observed that the experimental SY versus collision energy curves for the leucine enkephalin can be described by the Rice-Ramsperger-Kassel (RRK) formalism by reducing the total degrees of freedom (DOF) to about one-fifth. Furthermore, this collision model with the RRK formalism was used to estimate the critical energy (E o ) of lithiated polyethers, including polyethylene glycol (PEG), polypropylene glycol (PPG), and polytetrahydrofurane (PTHF) with degrees of freedom similar to that of leucine enkephalin. Applying polyethers with similar DOF provided the elimination of the effect of DOF on the unimolecular reaction rate constant. The estimated value of E o for PEG showed a relatively good agreement with the value calculated by high-level quantum chemical calculations reported in the literature. Interestingly, it was also found that the E o values for the studied polyethers were similar.
Figure
?  相似文献   

2.
The fragmentation reactions of the MH+ ions of Leu-enkephalin amide and a variety of heptapeptide amides have been studied in detail as a function of collision energy using a QqToF beam type mass spectrometer. The initial fragmentation of the protonated amides involves primarily formation of bn ions, including significant loss of NH3 from the MH+ ions. Further fragmentation of these bn ions occurs following macrocyclization/ring opening leading in many cases to bn ions with permuted sequences and, thus, to formation of non-direct sequence ions. The importance of these non-direct sequence ions increases markedly with increasing collision energy, making peptide sequence determination difficult, if not impossible, at higher collision energies.
Figure
?  相似文献   

3.
Quantification of monosaccharides and disaccharides in five honey samples through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using HgTe nanostructures as the matrix and sucralose as an internal standard has been demonstrated. Under optimal conditions (1× HgTe nanostructure, 0.2 mM ammonium citrate at pH 9.0), the SALDI-MS approach allows detection of fructose and maltose at the concentrations down to 15 and 10 μM, respectively. Without conducting tedious sample pretreatment and separation, the SALDI-MS approach allows determination of the contents of monosaccharides and disaccharides in honey samples within 30 min, with reproducibility (relative standard deviation <15%). Unlike only sodium adducts of standard saccharides detected, sodium adducts and potassium adducts with differential amounts have been found among various samples, showing different amounts of sodium and potassium ions in the honey samples. The SALDI-MS data reveal that the contents of monosaccharides and disaccharides in various honey samples are dependent on their nectar sources. In addition to the abundant amounts of monosaccharides and disaccharides, oligosaccharides in m/z range of 650???2700 are only detected in pomelo honey. Having advantages of simplicity, rapidity, and reproducibility, this SALDI-MS holds great potential for the analysis of honey samples.
Figure
?  相似文献   

4.
Complete Raman and IR spectra of maltose monohydrate, cellobiose and gentiobiose have been recorded in the crystalline state. These three disaccharides present the same monosaccharide composition of the glucose molecule and the remaining studied position (1–4 and 1–6) of the glycosidic linkage. Moreover, maltose and cellobiose present the different configurations of the glycosidic linkage α, 1–4 and β, 1–4, respectively. These data will constitute the support for theoretical calculations of normal modes of vibration. The assignments of the calculated bands of vibration will be made on the basis of the potential energy distributions using a modified Urey—Bradley—Shimanouchi intramolecular potential energy combined with a specific intermolecular potential energy function. The calculations show that using a correct initial force field, it is possible to reproduce correctly the density of observed vibrational states for large molecules such as disaccharides. The standard deviation between calculated and observed frequencies, below 1500 cm−1, leads to values of 4.7, 4.2 and 4.6 cm for maltose monohydrate, cellobiose and gentiobiose, respectively. Our previous investigations on trehalose dihydrate, sophorose monohydrate and laminaribiose are confirmed in this study and complete the previous assignments for the whole set of disaccharides.  相似文献   

5.
The fragmentation reactions of the MH+ ions as well as the b7, a7, and a7* ions derived therefrom have been studied in detail for the octapeptides MAAAAAAA, AAMAAAAA, AAAAMAAA, and AAAAAAMA. Ionization was by electrospray using a QqToF mass spectrometer, which allowed a study of the evolution of the fragmentation channels as a function of the collision energy. Not surprisingly, the product ion mass spectra for the b7 ions are independent of the original precursor sequence, indicating macrocyclization and reopening to the same mixture of protonated oxazolones prior to fragmentation. The results show that this sequence scrambling results in a distinct preference to place the Met residue in the C-terminal position of the protonated oxazolones. The a7 and a7* ions also produce product ion mass spectra independent of the original peptide sequence. The results for the a7 ions indicate that fragmentation occurs primarily from an amide structure analogous to that observed for a4 ions (Bythell et al. in J Am Chem Soc 132:14766–14779, 2010). Clearly, the rearrangement reaction they have proposed applies equally well to an ions as large as a7. The major fragmentation modes of the MH+ ions at low collision energies produce b7, b6, and b5 ions. As the collision energy is increased further fragmentation of these primary products produces, in part, non-direct sequence ions, which become prominent at lower m/z values, particularly for the peptides with the Met residue near the N-terminus.
Figure
?  相似文献   

6.
Electrospray ionization and collision induced dissociation on a triple quadrupole mass spectrometer were used to determine the effect of spatial crowding of incremented alkyl groups of two anomeric pairs of peralkylated (methyl to pentyl) disaccharides (maltose/cellobiose and isomaltose/gentiobiose). Protonated molecules were generated which underwent extensive fragmentation under low energy conditions. For both the 1 --> 4 and 1 --> 6 alpha and beta isomers, at comparable collision energies the methyl derivative exhibited the least fragmentation followed by ethyl, propyl, butyl, and pentyl. Collision energy is converted to rotational-vibrational modes in competition with bond cleavage, as represented by the slope of product/parent ion (D/P) ratio versus offset energy. Variable rotational freedom at the glycosidic linkage with incremented alkyl groups is hypothesized to be responsible for this effect. Discrimination of anomeric configuration was also assessed for these stereoiosmeric disaccharides. A systematic study showed that an increasing discrimination was attained for the 1 --> 4 isomeric pair as the size of the derivative increased from methyl to pentyl. No anomeric discrimination was attained for the 1 --> 6 isomeric pair. Parent and product ion scans confirmed the consistency of fragmentation pathways among derivatives. Chem-X and MM3 molecular modeling programs were used to obtain minimum energy structures and freedom of motion volumes for the permethylated disaccharides. The modeling results correlated with the fragmentation ratios obtained in the mass spectrometer giving strong indication that the collision induced spectra are dependent on the freedom of rotational motion around the glycosidic bond.  相似文献   

7.
An ion mobility/time-of-flight mass spectrometer (IMS/TOF MS) platform that allows for resonant excitation collision induced dissociation (CID) is presented. Highly efficient, mass-resolved fragmentation without additional excitation of product ions was accomplished and over-fragmentation common in beam-type CID experiments was alleviated. A quadrupole ion guide was modified to apply a dipolar AC signal across a pair of rods for resonant excitation. The method was characterized with singly protonated methionine enkephalin and triply protonated peptide angiotensin I, yielding maximum CID efficiencies of 44 % and 84 %, respectively. The Mathieu qx,y parameter was set at 0.707 for these experiments to maximize pseudopotential well depths and CID efficiencies. Resonant excitation CID was compared with beam-type CID for the peptide mixture. The ability to apply resonant waveforms in mobility-resolved windows is demonstrated with a peptide mixture yielding fragmentation over a range of mass-to-charge (m/z) ratios within a single IMS-MS analysis.
Figure
?  相似文献   

8.
An understanding of the process of peptide fragmentation and what parameters are best to obtain the most useful information is important. This is especially true for large-scale proteomics where data collection and data analysis are most often automated, and manual interpretation of spectra is rare because of the vast amounts of data generated. We show herein that collisional cell peptide fragmentation, in this case higher collisional dissociation (HCD) in the Q Exactive, is significantly affected by the normalized energy applied. Both peptide sequence and energy applied determine what ion fragments are observed. However, by applying a stepped normalized collisional energy scheme and combining ions from low, medium, and high collision energies, we are able to increase the diversity of fragmentation ions generated. Application of stepped collision energy to HEK293T lysate demonstrated a minimal effect on peptide and protein identification in a large-scale proteomics dataset, but improved phospho site localization through increased sequence coverage. Stepped HCD is also beneficial for tandem mass tagged (TMT) experiments, increasing intensity of TMT reporters used for quantitation without adversely effecting peptide identification.
Figure
?  相似文献   

9.
10.
This paper reports on the first experimental study of the energies of noncovalent fluorine bonding in a protein-ligand complex in the absence of solvent. Arrhenius parameters were measured for the dissociation of gaseous deprotonated ions of complexes of bovine β-lactoglobulin (Lg), a model lipid-binding protein, and four fluorinated analogs of stearic acid (SA), which contained (X =) 13, 15, 17, or 21 fluorine atoms. In all cases, the activation energies (Ea) measured for the loss of neutral XF-SA from the (Lg + XF-SA)7– ions are larger than for SA. From the kinetic data, the average contribution of each?>?CF2 group to Ea was found to be ~1.1 kcal mol–1, which is larger than the ~0.8 kcal mol–1 value reported for?>?CH2 groups. Based on these results, it is proposed that fluorocarbon–protein interactions are inherently stronger (enthalpically) than the corresponding hydrocarbon interactions.
Figure
?  相似文献   

11.
Here, we describe a new application of ultra-performance liquid chromatography coupled with an electrospray ionization quadrupole time-of-flight mass spectrometry operating in MSE mode (UPLC-QTOF-MSE) for the sensitive, fast, and effective characterization of alkaloids in goldenseal (Hydrastis canadensis). This approach allowed identification of alkaloids using a cyclic low and high collision energy spectral acquisition mode providing simultaneous accurate precursor and fragment ion mass information. A total of 45 compounds were separated and 40 of them characterized including one new compound and 7 identified for the first time in goldenseal. The spectral data obtained using this method is comparable to those obtained by conventional LC-MSn. However, the UPLC-QTOF-MSE method offers high chromatographic resolution with structural characterization facilitated by accurate mass measurement in both MS and MS/MS modes in a single analytical run; this makes it suitable for the rapid analysis and screening of alkaloids in plant extracts.
Figure
Identification of alkaloids in goldenseal by UPLC-QTOF-MS in MSE mode  相似文献   

12.
Twenty singly-charged dipeptide ions with N-terminal arginine were photodissociated using 157 nm light in both a linear ion-trap mass spectrometer and a MALDI-TOF-TOF mass spectrometer. Analogous to previous work on dipeptides containing C-terminal arginine, this set of samples enabled insights into the photofragmentation propensities associated with individual residues. In addition to familiar products such as a-, d-, and immonium ions, m2 and m2+13 ions were also observed. Certain side chains tended to cleave between their β and γ carbons without necessarily forming d- or w-type ions, and a few other ions were produced by the high-energy fragmentation of multiple bonds.
Figure
?  相似文献   

13.
Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MSn, n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides 18O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS3 CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MSn CID (n = 3 – 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.
Figure
?  相似文献   

14.
The fragmentation properties of singly and doubly lithiated polytetrahydrofuran (PTHF) were studied using energy-dependent collision-induced dissociation. The product ion spectrum of [PTHF + Li]+ showed the formation of three different series corresponding to product ions with hydroxyl, aldehyde and vinyl end-groups. Interestingly, besides these series, two additional, non-lithiated product ions C4H9O+ and C4H 7 + were identified in the MS/MS spectra. The MS/MS of the doubly lithiated PTHF ([PTHF + 2Li]2+) with a number of repeat units ranging from 8 to 27 showed the formation of product ions similar to those of the singly lithiated series, however, doubly lithiated product ions and product ions formed by the loss of one Li+-ion from the precursor ion also appeared with significant abundances. Analysis of the breakdown curves for the singly and doubly charged PTHF indicated that the series A ions are formed most probably together with the series B ions, while members of the series C ions appeared at significantly higher collision energies. The fragmentation properties of [PTHF + Li]+ and [PTHF + 2Li]2+ were also interpreted using the survival yield method. It was found that the collision energy/voltage necessary to obtain 50% fragmentation (CV50) was dependent linearly on the number of the repeat units, i.e., on the size, or the number of degrees of freedom (DOF).  相似文献   

15.
Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2] ̄?. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.
Figure
?  相似文献   

16.
The ESR spectrum of the first representative of highly conjugated triplet ethynylvinylcarbenes, 5-methylhexa-1,2,4-triene-1,3-diyl (1), was recorded in solid argon matrix. The zero-field splitting (ZFS) parameters of carbene 1 (D = 0.5054±0.0006 cm?1 and E = 0.0045±0.0002 cm?1) determined from the experimental ESR spectrum are in between the corresponding parameters of ethynylcarbene C3H2 (2) and vinylcarbene C3H4 (3): D(3) < D(1) < D(2) and E(2) < E(1) < E(3). Quantum chemical calculations of the ZFS parameters of 1, 2, and 3 have been carried out for the first time using two DFT-based approaches, RODFT and UDFT. An analysis of the experimental and theoretical ZFS parameters shows that carbene 1 is characterized by a greater extent of delocalization of the spin density of unpaired electrons than carbenes 2 and 3. The characteristic structural fragments of carbene 1 possess the principal features of the electronic structure of both ethynylcarbene (2) and vinylcarbene (3), respectively. Magnetic spin-spin interactions are identical in carbenes 1 and 2. The dominant contribution to D in 1 and 2 results from the one-center spin-spin interactions on carbon atoms in the propynylidene group, which are subjected to strong spin polarization.  相似文献   

17.
Tandem mass spectrometry (MS/MS) confirmed decarboxylation as the major collision-induced dissociation (CID) pathway of deprotonated hydrocinnamic acid (C6H5CH2CH2CO2H), N-phenylglycine (C6H5NHCH2CO2H) and 3-pyridin-2-ylpropanoic acid (C5H4NCH2CH2CO2H). The structure and stability of isomeric precursor and product anions were examined using density functional theory and ab initio methods. Geometry optimizations and frequency calculations were performed using the B3LYP/6-31++G(2d,p) level of theory and basis set with additional single point energies calculated at the MP2/6-311++G(2d,p) level. The formation of a delocalized product anion by carboxyl group-mediated migration of a benzylic proton to the ortho position of the ring and subsequent Cα–CO2 bond cleavage was energetically more favorable than direct decarboxylation and rearrangements of anions within ion-neutral complexes with carbon dioxide. The energy barrier for rearrangement of the delocalized product anion to the more stable benzylic anion was lowest in the fragmentation pathway of 3-pyridin-2-ylpropanoate. More energetically demanding fragmentation processes were indicated by the formation of other product anions at higher collision energy. Computations supported the feasibility of the formation of hydroxycarbonyl, styrene, and phenide ions from the benzylic anion of hydrocinnamate and the corresponding product anions from the nitrogen-containing analogues. The loss of dihydrogen from decarboxylated 3-pyridin-2-ylpropanoate was characterized computationally as hydride abstraction of an aryl proton. Overall, the results highlight the importance of exploring rearrangements in the fragmentation pathways of ions formed by electrospray ionization (ESI).
Figure
?  相似文献   

18.
From extraction experiments and $ \gamma $ -activity measurements, the exchange extraction constants corresponding to the general equilibrium M2+(aq) + Sr2+(nb) $ \Leftrightarrow $ M2+(nb) + Sr2+(aq) taking place in the two-phase water–nitrobenzene system (M2+ = Mg2+, Ca2+, Ba2+, Pb2+, Cu2+, Zn2+, Cd2+, $ {\hbox{UO}}_{2}^{2 + } $ , Mn2+, Co2+, Ni2+; 1 = macrocyclic lactam receptor–see Scheme 1; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Moreover, the stability constants of the M2+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: Mg2+ < Co2+ < Cu2+, Mn2+, Ni2+ < Cd2+ < Ca2+ < Ba2+, Zn2+ < Pb2+ <  $ {\hbox{UO}}_{2}^{2 + } $ .
Scheme 1
Structural formula of 2,18-dichloro-9,10,11,12-tetrahydro-6H, 20H-dibenzo[l,o][1,11,4,8]dioxadiazacyclohexadecine-7,13(8H, 14H)-dione (abbrev. 1)  相似文献   

19.
A new method for measuring perfluoroalkyl contaminants (PFCs) in biological matrices has been developed. An ultra-high pressure liquid chromatograph equipped with a quadrupole time-of-flight mass spectrometer (UPLC-QToF) was optimized using a continuous precursor/product ion monitoring mode. Unlike traditional targeted studies that isolate precursor/product ion pairs, the current method alternates between two ionization energy channels to continuously capture standard electrospray ionization (low energy) and collision induced dissociation (high energy) spectra. The result is the indiscriminant acquisition of paired low and high energy spectra for all constituents eluting from the chromatographic system. This technique was evaluated for the routine analysis of perfluoroalkyl species. Using this technique, linear perfluoroalkyl carboxylic acids (C4 to C14) and perfluoroalkyl sulfonates (C4, C6, C8 and C10) exhibited a linear range spanning over three orders of magnitude and were detectable at levels less than 1 pg on column with a root mean squared signal to noise ratio of 5 to 20. Lake trout (Salvelinus namaycush) and National Institutes of Standards and Technology Standard Reference Material 1946 were used to evaluate matrix effects and the accuracy of this method when applied to a whole fish extract. The current method was also evaluated as a diagnostic tool to identify unknown PFCs using experimental fragmentation patterns, mass defect filtering and Kendrick plots.
Figure
The future of toxics analysis in biological media: cataloging spectral fingerprints at targeted analysis sensitivity.  相似文献   

20.
Maturation of the nickel-containing urease of Klebsiella aerogenes is facilitated by the UreD, UreF, and UreG accessory proteins along with the UreE metallo-chaperone. A fusion of the maltose binding protein and UreD (MBP-UreD) was co-isolated with UreF and UreG in a soluble complex possessing a (MBP-UreD:UreF:UreG)2 quaternary structure. Within this complex a UreF:UreF interaction was identified by chemical cross-linking of the amino termini of its two UreF protomers, as shown by mass spectrometry of tryptic peptides. A pre-activation complex was formed by the interaction of (MBP-UreD:UreF:UreG)2 and urease. Mass spectrometry of intact protein species revealed a pathway for synthesis of the urease pre-activation complex in which individual hetero-trimer units of the (MBP-UreD:UreF:UreG)2 complex bind to urease. Together, these data provide important new insights into the structures of protein complexes associated with urease activation.
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号