首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Two experimental methods of measuring masses of exotic nuclei in the storage ring ESR are presented. Bismuth and nickel fragments were produced via projectile fragmentation, separated and investigated with the combination of the fragment separator FRS and the ESR: (i) Direct mass measurements of relativistic projectile fragments were performed using Schottky mass spectrometry (SMS), i.e., exotic nuclei were stored and cooled in the ESR. Applying electron cooling, the relative velocity spread of circulating low intensity beams can be reduced below 10−6. Under this condition a mass resolving power of up to m/Δm=6.5·105 (FWHM) was achieved in a recent measurement. Previously unknown masses of more than 100 neutron-deficient isotopes have been measured in the range of 60≤Z≤84. Using known Q α values the area of known masses could be extended to more exotic nuclei and to higher proton numbers. The results are compared with mass models and extrapolations of experimental values. In a second experiment with 209Bi projectiles the area of the measured masses was extended to lower proton numbers. Due to various improvements at the ESR the precision of the measurements could be raised. (ii) Exotic nuclei with half-lives shorter than the time needed for SMS (present limit: T 1/2 ≈ 5 sec) can be investigated by time-of-flight measurements whereby the ESR is operated in the isochronous mode. This novel experimental technique has been successfully applied in first measurements with nickel and neon fragments where a mass resolving power of m/Δm=1.5·105 (FWHM) was achieved.  相似文献   

2.
肖特基质谱仪   总被引:2,自引:2,他引:0  
肖特基(Schottky)精密质量谱仪,是建立在GSI所(当今核研究的领导所)电子冷却存储环(ESR)上的精密质量谱仪,它对轻中量核与重核的测量精度Δm/m分别达到5×10-6,和5×10-7.该谱仪为非阻挡型极灵敏的,甚至可测出一个裸核的测量设备,是冷却存储环束流诊断的可靠仪器,又是一台作核反应和核谱学研究的精密质量测定的谱仪. A Schottky precise mass spectroscope in light medium and in heavier nuclei with the mass resolution of Δm/m=5×10-6                  or 5×10-7, respectively,has been successfully built up and operated well at ESR ( Experimental Storage Ring cooled by electron beam) in G SI,the leading nuclear research institute.The spectroscope is anon stop of the beam type with quite sensitive,even one nucleus can be measured,set up that is a beam diagnosis relia ble instrument for the cooling beam in ESR...  相似文献   

3.
Projectile fragments of a 209Bi beam were separated in flight with the fragment separator FRS and injected into the experimental storage ring ESR. In the ESR a beam containing up to about 100 different isotopes was cooled to a relative velocity spread of δv/v=10−6 by means of the electron cooler. The image currents of the ions induced in a Schottky pick-up probe at each turn were recorded. A subsequent Fast Fourier Transformation of these signals yields the revolution frequencies of the different isotopes stored in the ESR. Unknown masses of more than 150 neutron-deficient nuclides in the element range of 52≤Z≤85 have been measured directly by Schottky Mass Spectrometry and in addition more than 60 new masses have been obtained from α-decay chains. These new mass data allow the location of the one-proton dripline and the prediction of the two-proton dripline for heavy nuclides. The experimental masses are compared with different theoretical predictions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The Penning-trap mass spectrometer SHIPTRAP at GSI is designed to provide clean and cooled beams of singly charged radioactive ions produced in fusion-evaporation reactions and separated in-flight by the velocity filter SHIP. The scientific goals include mass spectrometry, atomic and nuclear spectroscopy, and chemistry of transuranium species which are not available at ISOL- or fragmentation facilities Penning-trap based mass measurements on radionuclides relies up to now on the destructive time-of-flight ion-cyclotron-resonance method. One of the main limitations to the experimental investigations is the low production rate of most of these exotic nuclides, for which the use of this detection scheme is not applicable. A sensitive and non-destructive method, like the narrow-band Fourier Transform ion-cyclotron-resonance technique, is ideally suited for the identification and characterization of these species. A new cryogenic trap setup for SHIPTRAP exploiting this detection technique as well as some results of first preparatory tests are presented.  相似文献   

5.
The beam quality of radioactive ion beams produced by present target ion source technology is often not sufficient for direct post-acceleration. Furthermore, pulsed beams insure a more efficient use of an accelerator. In the case of REX-ISOLDE, the post accelerator at the CERN ISOLDE facility, a gas-filled Penning trap (REXTRAP) has been chosen for accumulation of the radioactive ions and conversion into cooled bunches. Radial centering of the ions is achieved by applying an rf field with a frequency equal to the cyclotron frequency of the desired ion species. The efficiency achieved in the first tests with different isotopes covering nearly the entire mass range was already >20%. Going to total numbers of >105 stored ions in the trap a shift of the centering frequency could be observed, which is most likely due to space charge effects. Despite this, it was possible to accumulate up to 107 ions and deliver them as cooled bunches. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
N=Z核的质量数据对于研究rp-和νp-过程至关重要。此外,N=Z原子核的质量数据将会帮助我们解决与核结构有关的许多关键问题。结合碎片分离器的等时性质谱仪(Isochronous mass spectrometry,IMS)是十分快速有效而且高分辨的质量测量工具。由于N=Z核的m/q值非常接近,目前国际上的储存环质量谱仪CSRe/IMP和ESR/GSI还无法实现对N=Z核运用飞行时间谱进行鉴别,因而无法对它们进行质量测量。在日本理化学研究所的仁科加速器中心新建了专用的等时性质谱仪(IMS),即稀有放射性同位素储存环"Rare-RI Ring"(R3),以确定短寿命的放射性原子核的质量,其目标质量相对精度为10-6。R3质谱仪与高分辨的碎片分离器BigRIPS的组合,运用束流线的高分辨的离子鉴别,使得R3上的IMS方法对N=Z核进行质量测量成为可能。本文设计了专用的等时性束流光学设置,模拟了124Xe的主束经过碎裂反应产生的N=Z核在束流线中穿过各焦平面的径迹、能量、速度等信息,同时检验了这些次级束在环内的飞行时间相对于动量的变化关系。模拟的结果表明:当储存环的等时性光学设置在某一个N=Z核时,所有其它N=Z核在环内的回旋时间也与动量弥散无关,说明了这些核也满足等时性条件。基于N=Z核的这种等时性的特点,本文对R3上刻度N=Z核的方法也进行了讨论。  相似文献   

7.
The combination of the projectile fragment separator FRS and the cooler-storage ring ESR at the accelerator facility of GSI Darmstadt offers the unique opportunity to study beta decay of stored highly-charged ions. Basic nuclear properties such as masses and half-lives are measured by applying the mass- and time-resolved Schottky Mass Spectrometry (SMS). The relative mass-to-charge ratio is directly correlated to the relative revolution frequency. The SMS is sensitive to single stored ions and the decay of each stored ion can be precisely determine by steady monitoring of the corresponding revolution frequencies. On this basis the single particle decay-spectroscopy has been developed which allows for an unambiguous time-resolved and background-free identification of a certain decay branch. In this contribution we discuss experiments on the orbital electron capture (EC) of radioactive ions in the ESR. Fully ionized, hydrogen- and helium-like 140Pr and 142Pm ions have been selected for these studies. These nuclei decay to stable daughter nuclei via either the three-body ?? ?+?- or the two-body EC-decay by a single allowed Gamow?CTeller (1?+? ??0?+?) transition.  相似文献   

8.
A cooled beam of decelerated highly-charged heavy ions is slowly extracted out of the cooler and storage ring ESR, by combining the deceleration technique and the charge exchange extraction mode. The quality of the external ion beam is tested by a channeling experiment. Bare Au79+ ions are injected into the ESR at an energy of 360 MeV/u, decelerated to 53 MeV/u, and finally cooled strongly in the electron cooler. By breeding of neighboring charge state ions via radiative recombination in the electron cooler H-like ions are produced. The H-like ion fraction is extracted out of the storage ring. This extracted Au78+ ion beam is probed by a channeling experiment measuring the extinction rate of the projectile Kα X-ray yield around the [110] axis of a thin silicon crystal. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
ISOLTRAP is a Penning trap mass spectrometer for high-precision mass measurements on short-lived nuclides installed at the on-line isotope separator ISOLDE at CERN. The masses of close to 300 radionuclides have been determined up to now. The applicability of Penning trap mass spectrometry to mass measurements of exotic nuclei has been extended considerably at ISOLTRAP by improving and developing this double Penning trap mass spectrometer over the past two decades. The accurate determination of nuclear binding energies far from stability includes nuclei that are produced at rates less than 100 ions/s and with half-lives well below 100ms. The mass-resolving power reaches 107 corresponding to 10keV for medium heavy nuclei and the uncertainty of the resulting mass values has been pushed down to below 10-8. The article describes technical developments achieved since 1996 and the present performance of ISOLTRAP.  相似文献   

10.
The FRS-ESR facility at GSI provides one of the most efficient methods for direct mass measurements. In the present experiment, exotic nuclei were produced via fragmentation of 152Sm projectiles in a thick beryllium target at 500-600 MeV/u, separated in-flight with the fragment separator FRS, and injected into the storage-cooler ring ESR. Time-resolved Schottky Mass Spectrometry was applied for mass measurements of stored and electron-cooled bare and few-electron ions. 373 different nuclides were identified by means of the spectra of their revolution frequencies. Masses for 18 nuclides (84Zr, 92Ru, 94Rh, 107,108,110Sb, 111,112,114I, 118Ba, 122,123La, 124Ce, 127Pr, 129Nd, 132Pm, 134Sm, 137Eu) have been determined for the first time. Masses for 111,112I and 113Xe have been obtained via known α-decay energies. The experiment and first results will be presented.  相似文献   

11.
A decelerator will be installed at GSI in order to provide and study heavy nuclei without or with only few electrons at very low energies or even at rest. Highly-charged ions will be produced by stripping at relativistic energies. After electron cooling and deceleration in the Experimental Storage Ring (ESR) the ions are ejected out of the storage ring at 4 MeV/u and further decelerated in a combination of linear accelerator structures operated in reverse. Finally, they are injected into a Penning trap where the ions are cooled to 4 K by electron cooling in combination with resistive cooling. From here, the ions can be transferred in a quasi DC or in a pulsed mode to different experimental setups. This article describes the technical concepts of this project focused on the Penning trap.   相似文献   

12.
An overview of direct mass measurements of exotic nuclei at the FRS-ESR facility at GSI is given. The nuclides are produced at relativistic energies by projectile fragmentation and fission, separated in-flight at the fragment separator FRS and injected into the storage ring ESR. Mass measurements are performed using Schottky and Isochronous Mass Spectrometry, which both allow for high precision measurements with single-ion sensitivity. Recent experimental developments are summarized, and examples for measurement results are given, including applications in nuclear structure physics and astrophysics, comparisons with mass predictions, and the search for new isotopes and isomers. Further research potential will be available at next-generation fragment-separator-storage-ring facilities such as the Super-FRS-CR-NESR complex at the future FAIR facility.  相似文献   

13.
The properties of electron cooled heavy ion beams in the ESR storage ring are dominated by heating due to intrabeam scattering. For low intensity ion beams a sudden reduction of the longitudinal ion beam temperature has been detected by Schottky noise analysis. This can be interpreted as the disappearance of intrabeam scattering heating which could allow a longitudinal ordering of the ion beam.  相似文献   

14.
A next-generation slow radioactive nuclear ion beam facility (SLOWRI) which provides slow, high-purity and small emittance ion beams of all elements is being build as one of the principal facilities at the RIKEN RI-beam factory (RIBF). High energy radioactive ion beams from the projectile fragment separator BigRIPS are thermalized in a large gas catcher cell. The thermalized ions in the gas cell are guided and extracted to a vacuum environment by a combination of dc electric fields and inhomogeneous rf fields (rf carpet ion guide). From there the slow ion beam is delivered via a mass separator and a switchyard to various devices: such as an ion trap, a collinear fast beam apparatus, and a multi-reflection time of flight mass spectrometer. In the R&D works at the present RIKEN facility, an overall efficiency of 5% for a 100A MeV 8Li ion beam from the present projectile fragment separator RIPS was achieved and the dependence of the efficiency on the ion beam intensity was investigated. Recently our first spectroscopy experiment at the prototype SLOWI was performed on Be isotopes. Energetic ions of 10Be and 7Be from the RIPS were trapped and laser cooled in a linear rf trap and the specific mass shifts of these isotopes were measured for the first time.  相似文献   

15.
Recently, intense beams of highly charged ions have become available at heavy ion cooler rings. The obstacle for producing these highly interesting candidates is the large binding energy of K-shell electrons in heavy systems in excess of 100 keV. One way to remove these electrons is to strip them off by passing the ion through material. In the cooler ring, the ions are cooled to a well defined velocity. At the SIS/ESR complex it is possible to produce, store, and cool highly charged ions up to bare uranium with intensities exceeding 108 atoms in the ring. This opens the door for precision laser spectroscopy of hydrogenlike-heavy ions, e.g.209Bi82+, and allows to examine the interaction of the single electron with the large fields of the heavy nucleus, exceeding any artificially produced electric and magnetic fields by orders of magnitude. In the electron cooler the interaction of electrons and highly charged ions otherwise only present in the hottest plasmas can be studied.  相似文献   

16.
Hybrid recoil mass analyzer (HYRA) is a unique, dual-mode spectrometer designed to carry out nuclear reaction and structure studies in heavy and medium-mass nuclei using gas-filled and vacuum modes, respectively and has the potential to address newer domains in nuclear physics accessible using high energy, heavy-ion beams from superconducting LINAC accelerator (being commissioned) and ECR-based high current injector system (planned) at IUAC. The first stage of HYRA is operational and initial experiments have been carried out using gas-filled mode for the detection of heavy evaporation residues and heavy quasielastic recoils in the direction of primary beam. Excellent primary beam rejection and transmission efficiency (comparable with other gas-filled separators) have been achieved using a smaller focal plane detection system. There are plans to couple HYRA to other detector arrays such as Indian national gamma array (INGA) and 4π spin spectrometer for ER tagged spectroscopic/spin distribution studies and for focal plane decay measurements.  相似文献   

17.
Self-assembled monolayers represent well-defined systems that is a good model surface to study the effect of primary ion beams used in secondary ion mass spectrometry. The effect of polyatomic primary beams on both aliphatic and aromatic self-assembled monolayers has been studied. In particular, we analysed the variation of the relative secondary ion yield of both substrate metal-cluster (Aun) in comparison with the molecular ions (M) and clusters (MxAuy) by using Bi+, Bi3+, Bi5+ beams. Moreover, the differences in the secondary ion generation efficiency are discussed. The main effect of the cluster beams is related to an increased formation of low-mass fragments and to the enhancement of the substrate related gold-clusters. The results show that, at variance of many other cases, the static SIMS of self-assembled monolayers does not benefit of the use of polyatomic primary ions.  相似文献   

18.
The accelerator group at INFN-LNL has been mostly engaged, recently, in completing and commissioning the higher current injector of the linac booster ALPI (named PIAVE) and in constructing and assembling the front-end part of a high current driver linac for the RNB facility SPES. PIAVE, designed to accelerate ions with A/Q = < 8.5 up to 1.2 MeV/u, is now completed. The injector has been commissioned with O, Ar, Ne and Xe beams. Neon and argon beams have been delivered to experiments for a total of about 400 hours. A consolidation program of PIAVE and ALPI is planned, so as to deliver a larger variety of beams with a current range  pnA and with an energy exceeding the Coulomb barrier in relevant nuclear reaction cases. The RNB facility SPES, allowing a frontier program in RNB physics, is being designed and prototyped: beams of neutron rich medium-to-heavy mass nuclei will be produced inducing 238U fission with a 40 MeV 200μA proton beam impinging onto a multi-slice direct target. A further development of ALPI will make it best suitable for the re-acceleration of radioactive nuclear species, after charge breeding and isotope selection.  相似文献   

19.
We propose determination of isotope shifts for radioactive beryllium isotopes using laser cooled ions in a linear radio frequency (RF) trap. Based on these measurements, combined with precise mass shift calculations, it will be possible to extract model-independent nuclear charge radii of 7,9,10Be and the one-neutron halo 11Be with precision better than 3%. Radioactive beryllium isotopes produced at ISOLDE and ionized with a laser ion source will be cooled and bunched in the radio frequency quadrupole buncher of ISOLTRAP. Ion temperatures will be reduced to the mK range by sympathetic cooling with co-trapped laser cooled ions in a specially designed two-stage linear RF trap. Resonances will be detected via fluorescence and frequencies measured with a femtosecond frequency comb.  相似文献   

20.
We present nuclear physics programs based on the planned experiments using rare isotope beams (RIBs) for the future Korean Rare Isotope Beams Accelerator facility(KRIA). This ambitious facility has both an Isotope Separation On Line (ISOL) and fragmentation capability for producing RIBs and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. Low energy RIBs at Elab = 5 to 20 MeV per nucleon are for the study of nuclear structure and nuclear astrophysics toward and beyond the drip lines while higher energy RIBs produced by inflight fragmentation with the reaccelerated ions from the ISOL enable to explore the neutron drip lines in intermediate mass regions. The planned programs have goals for investigating internal structures of the exotic nuclei toward and beyond the nucleon drip lines by addressing the following issues: how the shell structure evolves in areas of extreme proton to neutron imbalance; whether the isospin symmetry maintains in isobaric mirror nuclei at and beyond the drip lines; how two-proton radioactivity affects abundances of the elements; what the role of the continuum states including resonant states above protondecay threshold in exotic nuclei is in astrophysical nuclear reaction processes, and how the nuclear reaction rates triggered by unbound proton-rich nuclei make an effect on rapid proton capture processes in a very hot stellar plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号