首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用溶胶-凝胶法合成了以SrMgSi2O7为基质,掺杂Eu2+,Dy3+的长余辉发光材料,并表征其结构,激发-发射光谱和余辉衰减曲线。XRD分析表明,所合成的样品为SrMgSi2O7晶体结构。发光粉体的激发波长范围较宽,表明从紫外至可见光均可激发该发光材料。发射光谱主峰位于466nm。样品在自然光照射后持续发出明亮的蓝光,余辉时间持续8h以上。  相似文献   

2.
杂质的添加对SrAl2O:Eu^2+,Dy^3+余辉发光特性的改善   总被引:16,自引:5,他引:11  
采用溶胶-凝胶法制备SrAl2O4:Eu^2 ,Dy^3 磷光体,并在合成过程中添加硼或硅以探讨光致发光及长余辉发光性质。发现硼、硅添加物不仅是助熔剂,且能改良SrAl2O4:Eu^2 ,Dy^3 之长余辉的持续时间及余辉发光强度。基于不同磷光体样品的实验结果比较,综合材料表面微结构观察、X射线衍射图谱、热释发光光谱与余辉衰减曲线的测量等实验结果分析,推断在SrAl2O4:Eu^2 ,Dy^3 中添加硼、硅可导致磷光体缺陷增加并稳定活化剂Eu^2 的价态。  相似文献   

3.
Y2O3:Eu^3+发光薄膜的溶胶—凝胶法制备、表征及图案化   总被引:7,自引:0,他引:7  
采用Pechini溶胶-凝胶法制备了纳米级Y2O3:Eu^3 发光薄膜,同时,通过软石印技术得到了条纹宽度为5-60μm的Y2O3:Eu^3 图案化发光薄膜,通过X射线衍射(XRD),付里叶变换-红外光谱(FT-IR),原子力显微镜(AFM),光致发光(PL)光谱及寿命等方法对得到的发光薄膜进行了表征,XRD结果表明500℃时薄膜开始结晶,900摄氏度已结晶完全,得到了立方相的产物,图案化的条纹在烧结的过程中发生了明显的收缩(50%),Y2O3基质向掺杂的稀土离子Eu^3 发生了有效的能量传递,使得Eu^3 显示出5D0-7FJ(J=0,1,2,3,4)特征发射,寿命和光致发光光谱的研究表明,发光强度随着温度的升高而增强。  相似文献   

4.
采用微乳液法合成了MAl2O4:Eu^2+,Dy^3+(M=Ca,Sr,Ba)长余辉发光材料,并对其晶体结构和发光性能进行了比较与讨论。XRD分析表明,所合成的Ca2O4:Eu^2+,Dy^3+,SrAl2O4:Eu^2+,Dy^3+粉体为单斜晶系结构,BaAl2O4:Eu^2+,Dy^3+粉体为六方晶体结构。MAl2O4:Eu^2+,Dy^3+(M=Ca,Sr,Ba)发光材料的激发光谱都为一宽带连续谱,表明从紫外至可见光均可有效的激发该材料。发射光谱的发射波长峰值分别为440nm(M=Ca),520nm(M=Sr)和496nm(M=Ba)。对应的发光颜色分别为蓝色、黄绿色和蓝紫色。余辉衰减曲线分为快衰减、中间过渡衰减和随后极长的慢衰减过程,符合双曲线方程I=At^-n,余辉亮度与时间顺序为Sr〉Ca〉Ba。  相似文献   

5.
6.
李彬  白玉白 《应用化学》1994,11(1):67-71
以Mg(NO3)2,Ca(NO3)2,Eu(NO3)3,Bi(NO3)3和Si(OC2H5)4为反应物,采用溶胶-凝胶法,在比较低的温度,首次合成0.701molMgO-0.175molCaO-1.25molSiO2:0.06molEu^3+,0.002molBi^3+(加入Li^+作为电荷补偿剂)发光体,得到了最佳合成条件,研究了由溶胶向凝胶转变和凝胶向发光晶体的转变过程,探讨了发光体在不同激光  相似文献   

7.
长余辉材料Sr2MgSi2O7:Eu2+,Dy3+的制备及发光性能研究   总被引:1,自引:0,他引:1  
在碳粉还原条件下,采用高温固相法制备出了亮度高、余辉时间长的Sr2MgSi2O7Eu2+,Dy3+长余辉发光材料,并对其性能以及影响其发光性能的因素进行了研究.发光粉体还原后的发射光谱表明,其主发射峰位于463 nm左右;余辉衰减曲线证明其余辉衰减过程存在快速衰减和慢衰减两个过程.  相似文献   

8.
沉淀法合成蓝色长余辉发光材料Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)   总被引:1,自引:0,他引:1  
采用沉淀法制备了高亮度的长余辉发光材料Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+).通过XRD、荧光光谱和热释光谱对其进行表征.XRD测试表明所制备的Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+),四方晶.荧光光谱测试表明,λ_(em)=467 nm作为监控波长,在275~450 nm之间有宽的激发光谱,峰值位于399 nm.用λ=399 nm激发样品,其发射光谱为一宽带,峰值位于467 nm.1050℃煅烧前躯体所制备的Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)发光性能最好.热释光谱峰值位于357 K,适合长余辉现象的产生.对Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)长余辉发光机理进行了讨论.  相似文献   

9.
溶胶-凝胶法制备稀土无机发光材料及其发光性能的研究   总被引:1,自引:0,他引:1  
报道了用溶胶-凝胶法制备可用于光转换农膜的稀土无机发光材料, 用荧光分光光度计研究了其发光性能, 并对实验过程中影响样品发光性能的各种因素(体系pH值、反应温度、不同稀土组合)进行了探讨, 得到了优化的实验条件.当控制体系pH=9, 反应温度50 ℃, Eu3+/Y3+ 值为50/50时, 所得样品的发光性能较好.  相似文献   

10.
采用凝胶-燃烧法合成了系列稀土离子掺杂的Sr0.94MgSi2O6:Eu0.022+,Ln0.043+(Ln=La,Ce,Nd,Sm,Gd,Dy)蓝色长余辉发光材料,用X射线粉末衍射(XRD)、扫描电镜(SEM)、荧光分光光度计等对合成产物进行了分析和表征.结果表明:掺杂了不同稀土离子的SrMgSi2O6:Eu2+,La3+的晶体结构均为网方品系结构;其激发、发射光谱的峰形、峰位基本无变化,激发光谱为一宽带,最大激发峰位于400 nm处,次激发峰佗于415 nm处,发射光谱也为一宽带,最大发射峰位于470 nm附近,是典型的Eu2+的4F5d_4f跃迁导致的,不同之处在于其激发光谱、发射光谱强度及余辉性质有所差别,其中Dy3+是最理想的共掺杂稀土离子,Sr0.94MgSi2O6:Eu0.022+Dy0.043+的余辉时间最长,可达4 h;而Sm3+最差,Sr0.94MgSi2O6:Eu0.022+,Sm0.043+的余辉亮度最低,余辉时间最短.  相似文献   

11.
利用Van Uitert公式讨论了Sr4Si3O8C14:Eu^2 中Eu^2 的晶格环境,并采用高温固相法合成了Eu^2 激活的氯硅酸镁锶Sr4-xMgxSi3O8C14荧光粉,实现了发射光从蓝绿一蓝紫色的变化。X射线衍射实验和荧光光谱数据表明,MG^2 的掺杂使Sr4-xMgxSi3O8C14基质中的晶格环境发生改变,从而出现两种不同Eu^2 的发光中心。  相似文献   

12.
利用溶胶-凝胶技术制备了掺不同量Eu^3 和不同退火温度下的SiO2凝胶和玻璃,通过在不同退火温度下样品的激光发谱,发射光谱,红外光谱和差热-热重曲线,研究了掺Eu3 的SiO2玻璃材料的结构和发光性能,结果显示,当Eu3 的掺杂量大于1.86%(质量分数),Eu^3 的发光强度趋于稳定,当样品的退火温度大于300度时,SiO2凝胶玻璃中吸附的水已基本除净,此时显示出Eu^3 的特征发射光谱,谱带位置分别是614,596,577nm,分别归属于^5Do-7F2,5D0-7F1,^5D0-^7F0跃迁,对应的激光发光谱显示6个峰,位置分别是318,362,380,393,412,462nm,说明300-500度是凝胶向玻璃转变的关键温度,而水对Eu^3 的发光有强烈的淬灭作用。  相似文献   

13.
红色长余辉发光材料Ca2Zn4Ti15O36:Pr^3+的合成和发光性质   总被引:4,自引:0,他引:4  
分别采用高温固相法和溶胶-凝胶法合成了新型红色长余辉发光材料Ca2Zn4Ti15O36:Pr。高温固相法合成Ca2Zn4Ti15O36需要在1200℃灼96h才能形成纯物相。热重分析曲线和X射线衍射分析结果表明:溶胶-凝胶法制得的前驱体在700℃灼烧12h开始形成Ca2Zn4Ti15O36物相;在1000℃灼烧24h得到Ca2ZnTi15O36纯物相;最佳反应温度为1000℃,激活剂Pr^3 的最佳浓度为0.6mol%,发光强度比高温固相法增强了510%。  相似文献   

14.
高效长余辉发光薄膜及粉体的溶胶—凝胶工艺研究   总被引:12,自引:3,他引:12  
研究了溶胶-凝胶工艺制备SrAl2O4:Eu^2 ,Dy^3 高效长余辉发光薄膜及粉体的工艺条件,以无机盐为原料,成功制备了均一、稳定、透明的SrAl2O4溶胶,并在较低温度下制备了均匀、无裂纹的发光薄膜和颗粒均匀的针状纳米发光粉体。通过热失重和X射线衍射结果分析了样品的结晶过程和晶相组成,并通过扫描电镜、透射电镜和荧光光谱的分析对薄膜和粉体的微结构、表面形态及发光性能进行了表征。结果表明,在本文的工艺条件下,制备的薄膜和粉体的发光特性与传统的高温固相烧结法相似,但烧结温度可降低300℃左右。  相似文献   

15.
溶胶-凝胶工艺制备发光薄膜研究进展   总被引:11,自引:0,他引:11  
本文综述了通过深胶-凝胶工艺制备发光薄膜的基本过程、薄膜的表征方法、发光薄膜的当前发展及应用情况。依据组成特点,对溶胶-凝胶法制备的发光薄膜乾地了分类阐述,并预言了今后该法制备发光薄膜的发展趋势。  相似文献   

16.
利用高温固相法合成了Ca2nO4:Eu3+色发射长余辉发光材料,对样品进行了X射线衍射分析、荧光光谱分析、形貌分析以及发光寿命测量.分析结果表明,在1350℃下烧结3 h的Ca2SnO4:Eu3+为单相产物,所得Ca2SnO4:Eu3+发光材料具有良好的发光性能,在267 nm紫外线激发下发出最强发射位于617 nm的锐线发射,并且具有明显的长余辉发光性能.  相似文献   

17.
采用沉淀法制备了高亮度的长余辉发光材料Sr2MgSi2O7∶Eu2+,Dy3+。通过XRD、荧光光谱和热释光谱对其进行表征。XRD测试表明所制备的Sr2MgSi2O7∶Eu2+,Dy3+为单相,四方晶。荧光光谱测试表明,用λem=467 nm作为监控波长,在275~450 nm之间有宽的激发光谱,峰值位于399 nm。用λex=399 nm激发样品,其发射光谱为一宽带,峰值位于467 nm。1 050 ℃煅烧前躯体所制备的Sr2MgSi2O7∶Eu2+,Dy3+发光性能最好。热释光谱峰值位于357 K,适合长余辉现象的产生。对Sr2MgSi2O7∶Eu2+,Dy3+长余辉发光机理进行了讨论。  相似文献   

18.
采用水热-均匀共沉淀法制备了纳米SrAl2O4:Eu2+,Dy3+长余辉发光材料.通过XRD、TEM、荧光光谱、热释光谱对其结构和性能进行分析.XRD结果表明所制备的SrAl2O4:Eu2+Dy3+纳米发光材料为单相,属单斜晶系.TEM测试表明纳米SrAl2O4:Eu2+,Dy3+发光材料为规则的球状粒子,粒径为50~80 nm,且分散性良好.激发和发射光谱测试表明,样品的激发光谱是峰值在356 nm 的连续宽带谱,发射光谱是峰值位于512 nm的宽带谱,与SrAl2O4:Eu2+,Dy3+粗晶材料相比,激发和发射光谱都出现了"蓝移"现象.样品的热释光峰值位于358 K,适合于产生长余辉.  相似文献   

19.
以高温固相法合成了Sr0.96Al2O4:Eu2+0.02,Dy3+0.02长余辉发光材料,其激发光谱和发射光谱均为宽带谱,激发光谱为300~480nm,具有从紫外到蓝绿光波段能量的吸收范围.随着稀土元素Eu2+掺杂量的增加,发光强度逐渐增强,当Eu2+掺杂量达到2(mol)%时,材料的发光强度最大.辅助激活剂Dy3+...  相似文献   

20.
Y2O3∶Eu3+发光薄膜的溶胶-凝胶法制备、表征及图案化   总被引:1,自引:0,他引:1  
采用Pechini溶胶-凝胶法制备了纳米级Y2O3∶Eu3+发光薄膜, 同时, 通过软石印技术得到了条纹宽度为5~60 μm的Y2O3∶Eu3+图案化发光薄膜. 通过X射线衍射 (XRD)、付里叶变换-红外光谱 (FT-IR)、原子力显微镜(AFM), 光致发光(PL)光谱及寿命等方法对得到的发光薄膜进行了表征. XRD结果表明500 ℃时薄膜开始结晶, 900 ℃已结晶完全, 得到了立方相的产物. 图案化的条纹在烧结的过程中发生了明显的收缩(50%). Y2O3基质向掺杂的稀土离子Eu3+发生了有效的能量传递, 使得Eu3+显示出5D0-7FJ(J=0, 1, 2, 3, 4)特征发射. 寿命和光致发光光谱的研究表明, 发光强度随着温度的升高而增强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号