首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In-situ scanning tunneling microscopy (STM), cyclic voltammetry (CV), and infrared reflection-adsorption spectroscopy (IRRAS) have been used to examine the electrodeposition of gold onto Pt(111) electrodes modified with benzenethiol (BT) and benzene-1,2-dithiol (BDT) in 0.1 M HClO4 containing 10 microM HAuCl4. Both BT and BDT were attached to Pt(111) via one sulfur headgroup. STM and IRRAS results indicated that the other SH group of BDT was pendant in the electrolyte. Both BT and BDT formed (2 x 2) structures at the coverage of 0.25, and they were transformed into (square root(3) x square root(3))R30 degrees as the coverage was raised to 0.33. These two organic surface modifiers resulted in 3D and 2D gold islands at BT- and BDT-coated Pt(111) electrodes, respectively. The pendant SH group of BDT could interact specifically with gold adspecies to immobilize gold adatoms on the Pt(111) substrate, which yields a 2D growth of gold deposition. Molecular resolution STM revealed an ordered array of (6 x 2 square root(13)) after a full monolayer of gold was plated on the BDT/Pt(111) electrode. Since BDT was strongly adsorbed on Pt(111), gold adatoms only occupied free sites between BDT admolecules on Pt(111). This is supported by a stripping voltammetric analysis, which reveals no reductive desorption of BDT admolecules at a gold-deposited BDT/Pt(111) electrode. It seems that the BDT adlayer acted as the template for gold deposit on Pt(111). In contrast, a BT adlayer yielded 3D gold deposit on Pt(111). This study demonstrates unambiguously that organic surface modifiers could contribute greatly to the electrodeposition of metal adatoms.  相似文献   

2.
The self-assembled monolayer (SAM) structure of the tetrathiafulvalene-side half of the Stoddart-Heath type [2]rotaxane on Au(111) surface was investigated using molecular dynamics (MD) simulations. We find that the orientation of the cyclobis(paraquat-p-phenylene) (CBPQT) ring depends dramatically on the coverage, changing in order to obtain highly packed SAMs. The ring lies with its large hollow parallel to the surface at lower coverage (up to one CBPQT per 27 surface Au atoms with a footprint of 1.9 nm(2); 1/27) when free space is available around it, but as the coverage increases (up to one CBPQT per 12 surface Au atoms with a footprint of 0.9 nm(2); 1/12), it tilts completely around its axis and lies with its smaller side (paraquat or phenyl ring) parallel to the surface to accommodate the reduced area available. We find that the best packing densities correspond to one CBPQT per 12-18 surface Au atoms (1/18-1/12) with footprints in the range between 0.9 nm(2) and 1.3 nm(2).  相似文献   

3.
Self-assembled thiol monolayers bound to single-crystal Au(111) surfaces containing a terminal olefin have been prepared and used to monitor electrochemically the cross-metathesis (CM) between the surface and an olefin-terminated ferrocenyl (Fc) derivative from solution over time. Mixed SAM surfaces were prepared by first adsorbing a diluent for 2 days followed by the olefinic alkanethiol for known adsorption time intervals; three diluents of varying length were used. The oxidation peak areas from the voltammetry show the CM reaction yields a maximum amount of product at 100-150 min. Beyond this time, thiol desorption is apparent and the Fc oxidation peaks diminished. A kinetic simulation of the interfacial reactions involving CM and desorption reactions are described and aided in the interpretation of the voltammetric responses. The length of the diluent and the coverage of surface olefins were important factors in limiting undesirable self-CM reactions on the surface, and a model of the relationship between the diluent and surface concentration of olefin is described. This study shows that attention to monolayer formation and reaction conditions are important parameters when maximizing CM yields on surfaces.  相似文献   

4.
Self-assembled monolayers (SAMs) were formed by the spontaneous adsorption of octythiocyanate (OTC) on Au(111) using both solution and ambient-pressure vapor deposition methods at room temperature and 50 degrees C. The surface structures and adsorption characteristics of the OTC SAMs on Au(111) were characterized by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). The STM observation showed that OTC SAMs formed in solution at room temperature have unique surface structures including the formation of ordered and disordered domains, vacancy islands, and structural defects. Moreover, we revealed for the first time that the adsorption of OTC on Au(111) in solution at 50 degrees C led to the formation of SAMs containing small ordered domains, whereas the SAMs formed by vapor deposition at 50 degrees C had long-range ordered domains, which can be described as (radical3 x 2 radical19)R5 degrees structures. XPS measurements of the peaks in the S 2p and N 1s regions for the OTC SAMs showed that vapor deposition is the more effective method as compared to solution deposition for obtaining high-quality SAMs by adsorption of OTC on gold. The results obtained will be very useful in understanding the SAM formation of organic thiocyanates on gold surfaces.  相似文献   

5.
A detailed study on the time-dependent organization of a decanethiol self-assembled monolayer (SAM) at a designed solution concentration onto a Au(111) surface has been performed with scanning tunneling microscopy (STM). The SAMs were prepared by immersing Au(111) into an ethanol solution containing 1 microM decanethiol with different immersion times. STM images revealed the formation process and adlayer structure of the SAMs. It was found that the molecules self-organized into adlayers from random separation to a well-defined structure. From 10 s, small domains with ordered molecular organization appeared, although random molecules could be observed on Au(111) at the very initial stage. At 30 s, the SAM consisted of uniform short stripes. Each stripe consisted of sets of decanethiol mainly containing eight molecules. With the immersion time increasing, the length of the stripes increased. At 5 min, the alkyl chains overlapped each other between the adjacent stripes, indicating the start of a stacked process. After immersing Au(111) in decanethiol solution for 3 days, a densely packed adlayer with a (radical 3 x radical 3)R30 degrees structure was observed. The formation process and structure of decanethiol SAMs are well related to sample preparation conditions. The wettability of the decanethiolate SAM-modified Au(111) surface was also investigated.  相似文献   

6.
The adsorption of thiolates with various tail molecules on the Au(111) surface has been investigated by first-principles calculations. We have considered six typical thiolate molecules, that is, methylthiolate, ethylthiolate, ethylenethiolate, acetylenethiolate, benzenethiolate, and thiophenethiolate. It is found that these thiolates exhibit little difference in their stable adsorption geometries. They are adsorbed at the bridge site with being significantly tilted from the surface normal. The adsorption energy of thiolate on Au, on the other hand, largely varies depending on the type of tail molecule, and is linearly proportional to the binding energy of thiolate with H. We discuss the tail molecule dependence in terms of the bonding environment around the C atom connected to the head S atom.  相似文献   

7.
We probe the electronic structure of alkanethiolate self-assembled monolayers (SAMs) on Au(111) using two-photon photoemission spectroscopy. We observe a dispersive unoccupied resonance close to the vacuum level with a lifetime shorter than 30 fs. The short lifetime and the insensitivity of the energy level and dispersion to molecular length (and thus layer thickness) suggest that the probability density of the electron wave function is concentrated inside the molecular layer close to the SAM/Au interface. Such an interfacial resonance results from the image like potential at the SAM/Au interface.  相似文献   

8.
Electrochemistry and in situ electrochemical scanning tunneling microscopy (STM) were used to study the blocking and structural properties of Shiff base V-ape-V self-assembled monolayers (SAMs) on the surface of Au(111) in perchloric acid solution. The complex-plane impedance plots for the SAM covered Au(111) electrodes, with the redox couple of Fe(CN)64–/3– present in solution, exhibit arc shapes, revealing that the electrochemical kinetics were controlled by the electron-transfer step. For bare Au(111), the electrode process was mass transport limited. The molecules adsorb on Au(111) with a flat-lying orientation and form a long-range well-defined adlayer. A new structure of was observed in the double-layer potential region. A structural model is proposed to interpret the molecular registry with Au(111) substrate.  相似文献   

9.
A fullerene derivative 10 with a terminal thiol group dissolves easily in common organic solvents and forms a densely packed self-assembled monolayer on gold surfaces. The functionalization of C(60) is based on the 1,3-dipolar cycloaddition of the azomethine ylide generated in situ from the corresponding aldehyde and N-methylglycine. The monolayers were characterized by grazing angle reflectance FTIR spectroscopy, scan tunneling microscopy, and cyclic voltammetry. The cyclic voltammogram of a SAM of 10 showed two well-resolved reversible cathodic waves corresponding to the first two one-electron reductions of the fullerene fragment.  相似文献   

10.
The electrochemical behaviour of self-assembled monolayer (SAM) of aliphatic hexadecanethiol was studied by cyclic voltammetry (CV), elimination voltammetry with linear scan (EVLS) and crystal quartz microbalance (QCM). SAMs were electrochemically created on gold-coated QCM crystal through the sulphur in 1-hexadecanethiol molecule head group. The effect of thiol concentration and potential scan rate on the SAM formation was studied. Formation of SAM was confirmed by CV and QCM. EVLS results revealed the kinetically controlled process followed with electrode reaction in adsorbed state characteristic for SAM formation at lower concentration. The electrode reaction of a totally adsorbed electroactive species was indicated by means of a peak-counter peak signal at higher thiol concentration.  相似文献   

11.
Infrared reflection spectroscopy (IRS), single wavelength ellipsometry, and density functional theory were used to elucidate the structure of a molecular tripod self-assembled monolayer (SAM) on polycrystalline gold{111} substrates. The tripod SAM was formed by the reaction of SiCl4 with a densely packed monolayer of 2-mercaptoethanol, 6-mercaptohexanol, and 16-mercaptohexadecanol under inert atmosphere. After reaction with SiCl4, IRS spectra show an intense absorption at approximately 1112 cm(-1) that is attributed to Si-O-C asymmetric stretching vibration of a molecular tripod structure. Harmonic vibrational frequencies computed at the B3LYP/6-311+g** level of theory for the mercaptoethanol tripod SAM closely match the experimental IRS spectra, giving further support for the tripod structure. When rinsed with methanol or water, the Si-Cl-terminated SAM becomes capped with Si-OMe or Si-OH. The silanol-terminated tripod SAM is expected to find use in the preparation of thin zeolite and silica films on gold substrates.  相似文献   

12.
We made theoretical calculations for a benzonitrile molecule and its clusters in the gas phase and as adsorbed on the Au(111) surface, to explain the observation by scanning tunneling microscope, that is, the trimer formation of cyanophenyl porphyrins adsorbed onto the Au(111) surface. With regard to the gas-phase species, ab initio calculations showed that (1) the benzonitrile dimer has a single stable structure that is planar and antiparallel; (2) the trimer has two isoenergetic stable structures, that is, a planar and cyclic structure and an antiparallel and nonplanar one; (3) the clusters are more stable, at low temperatures, than the monomer. For the adsorbed species, we made quantum mechanical/molecular mechanical calculations in which the interaction between the adsorbates and the surface is evaluated in a molecular-mechanical way by using analytical potential functions and an image charge model. Because the stable structures were found to be similar to those in the gas phase, the cluster formation of adsorbed cyanophenyl porphyrins was attributed to the interaction between cyanophenyl groups, which is barely affected by adsorbate-surface interaction. It was also found that the adsorbed cyclic benzonitrile trimer is more stable than the monomer and the dimer because the relative stability is dependent on enthalpy alone. We therefore concluded that the preferential formation of trimers by the adsorbed cyanophenyl porphyrins is due to the negligible contribution of entropy to the relative stability of the adsorbed species and that the adsorption hardly changes the situation found in the gas phase.  相似文献   

13.
Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state.  相似文献   

14.
A method is presented for depositing mixed self-assembled monolayers (SAMs) of dodecanethiol (C12) and 4'-methyl-1,1'-biphenyl-4-butane (H3C-C6H4-C6H4-(CH2)4-SH, BP4) by insertion of BP4 into a closely packed SAM of dodecanethiol on Au(111). Insertion takes place at defect sites such as domain boundaries or etch pits in the gold surface that are characteristic of C12 monolayers on gold. With a lower probability, insertion also occurs beside defect sites inside dodecanethiol domains. Insertion at defect sites results in domains of BP4, whereas insertion into C12 domains leads to isolated BP4 molecules. The isolated BP4 molecules are shown not to move at room temperature. By comparing the apparent height of the isolated BP4 molecules and BP4 domains, it is proposed that the isolated molecules have the same conformation as in the full-coverage phase. A simple two-layer model is proposed to characterize the current transport through BP4. The decay constant beta for the phenylene groups is deduced from the apparent STM heights of the inserted BP4 islands compared to the STM heights of the C12 closely packed monolayers.  相似文献   

15.
Characterization of self-assembled monolayers of thiols on Au(111)   总被引:1,自引:0,他引:1  
Self-assembled monolayers (SAMs) of n-butanethiol, n-dodecanethiol and their equimolar mixture on Au(111) were prepared and characterized by ellipsometry, contact angle measurement, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Results revealed that these SAMs are oriented ultrathin films with the thickness of nanometer scale, and the SAMs were influenced by the molecular chain length, the lattice orientation and cleanliness of the substrates. The surface of the longer chain SAM is hydrophobic. The thicknesses of three SAMs of n-butanethiol, n-dodecanethiol and their mixture revealed by ellipsometry and XPS are about 0.59 - 0.67nm, 1.60- 1.69 nm and 1.23 - 1.32nm, respectively. AFM images further demonstrated that the SAM formed by the mixture has some microdomains with two different thicknesses.  相似文献   

16.
17.
We report a computational investigation of the conformation and the dynamics of self-assembled monolayers (SAMs) of a set of aromatic thiols arranged in the ( radical3 x radical3)-R30 degrees packing ratio on a Au(111) surface using molecular dynamics (MD) simulations. It was found that the molecular conformations were better defined for the arylthiol with two phenyl groups as compared to those with a single phenyl group and that the chemical structure of the head and tail groups had a considerable influence on the system geometry. In line with the density functional theory (DFT) calculations of small thiol molecules, we found for the SAMs that the face-centered cubic (fcc) site on the Au(111) surface was the most preferred, followed by the hexagonal close-packed (hcp) site, while the bridge position showed the characteristics of a local energy maximum. The dynamics of thiol head groups on these three Au sites was found to govern the overall dynamics of SAMs as measured by the mean square displacement. We also report that both the conformation and the dynamics on the studied time scale were driven by the SAM formation energy.  相似文献   

18.
We develop an atomic-scale model for an ordered incommensurate gold sulfide (AuS) adlayer which has previously been demonstrated to exist on the Au(111) surface, following sulfur deposition and annealing to 450 K. Our model reproduces experimental scanning tunneling microscopy images. Using state-of-the-art Wannier-function-based techniques, we analyze the nature of bonding in this structure and provide an interpretation of the unusual stoichiometry of the gold sulfide layer. The proposed structure and its chemistry have implications for related S-Au interfaces, as in those involved in self-assembled monolayers of thiols on Au substrates.  相似文献   

19.
The adsorption and hydrogenation of carbon tetrachloride (CCl(4)) on a Pt (111) surface have been investigated using density functional theory (DFT). We have performed calculations on the adsorption energies and structures of CCl(4) on four different adsorption sites of a Pt (111) surface using the full adsorbate geometry optimization method. The results show that the adsorption energy of all of the potential sites is less than -17 kcal/mol, which indicates that CCl(4) is physiosorbed on a Pt (111) surface through van der Waals interactions. The dissociation and hydrogenation pathways were investigated by a transition state search. For the Pt(15), Pt(19), and Pt(25) cluster surfaces, the activation energies of dissociation obtained in this work are 15.69, 16.94, and 16.77 kcal/mol, respectively. The hydrogenation of CCl(3). was studied at the on-top site of the Pt(15) cluster, and the calculated activation energy is 5.06 kcal/mol. The small activation energies indicate that the Pt (111) surface has high catalytic activity for the CCl(4) hydrogenation reaction. In addition, the Hirshfeld population analysis reveals that the charge transfer from the Pt (111) surface to the adsorbates occurs in both the dissociation and hydrogenation pathways.  相似文献   

20.
In this study, through the choice of the well-known G-K biological coordination system, bioligand-alkali metal coordination has for the first time been brought onto an inert Au(111) surface. Using the interplay between high-resolution scanning tunneling microscopy and density functional theory calculations, we show that the mobile G molecules on Au(111) can effectively coordinate with the K atoms, resulting in a metallosupramolecular porous network that is stabilized by a delicate balance between hydrogen bonding and metal-organic coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号